工程力学 ›› 2017, Vol. 34 ›› Issue (3): 247-256.doi: 10.6052/j.issn.1000-4750.2015.08.0661

• 其他工程学科 • 上一篇    

基于ALE的大型输水隧道地震动响应并行数值分析

王小庆1,2, 金先龙1,2, 杨志豪3   

  1. 1. 上海交通大学机械系统与振动国家重点实验室, 上海 200240;
    2. 上海交通大学机械与动力工程学院, 上海 200240;
    3. 上海市隧道工程轨道交通设计研究院, 上海 200072
  • 收稿日期:2015-08-11 修回日期:2016-05-18 出版日期:2017-03-25 发布日期:2017-03-25
  • 通讯作者: 金先龙(1961-),男,湖北人,教授,博士,博导,主要从事大型复杂系统数值仿真及高性能计算研究(E-mail:jxlong@sjtu.edu.cn). E-mail:jxlong@sjtu.edu.cn
  • 作者简介:王小庆(1988-),男,河南人,博士生,主要从事大型复杂结构抗震分析及并行计算研究(E-mail:wxq@sjtu.edu.cn);杨志豪(1972-),男,上海人,教授级高工,博士,主要从事地下结构工程设计方面的研究(E-mail:zhyang@126.com).
  • 基金资助:
    国家863高技术研究发展计划项目(2012AA01AA307);国家自然科学基金项目(11272214,51475287)

PARALLEL NUMERICAL SIMULATION FOR DYNAMIC RESPONSE OF LARGE-SCALE WATER CONVEYANCE TUNNEL UNDER SEISMIC EXCITATION BASED ON ALE METHOD

WANG Xiao-qing1,2, JIN Xian-long1,2, YANG Zhi-hao3   

  1. 1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China;
    2. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
    3. Shanghai Tunnel Engineering & Rail Transit Design and Research Institute, Shanghai 200072, China
  • Received:2015-08-11 Revised:2016-05-18 Online:2017-03-25 Published:2017-03-25

摘要: 提出基于ALE (Arbitrary Lagrangian-Eulerian)方法的输水隧道地震动响应并行数值分析方法,采用ALE方法模拟内水和隧道的相互作用,提出基于耦合负载均衡的并行计算方法加快求解速度,采用显式中心差分法完成方程求解。针对某大型输水隧道,建立内水-隧道-土体耦合的全三维数值模型,分析其在非一致地震激励下的动力响应。模型中考虑材料非线性、接触及流固耦合非线性等实际情况,并采用PML (Perfectly Matched Layer)建立人工边界模拟无限区域。在曙光5000A超级计算机上,利用所提方法,完成该大规模非线性问题的求解。通过与附加质量法对比,验证ALE方法模拟内水-隧道耦合的可行性;分析输水隧道地震激励下的应力及变形情况;讨论内水量及变形缝对隧道动力响应的影响;分析并行计算效率。结果表明:环向应力较大值出现在靠近工作井的截面,隧道结构满足强度要求;隧道截面变形量处于安全范围内;满水隧道较空隧道承受更大应力;变形缝可以降低隧道的动力响应;所提并行计算方法可以获得较好的并行效率。

关键词: 输水隧道, 地震响应, ALE, 并行计算, 显式有限元, PML

Abstract: Parallel numerical simulation method for dynamic responses of water conveyance tunnel under seismic excitation is proposed based on ALE (Arbitrary Lagrangian-Eulerian) approach. The ALE is used to deal with the interaction between the inner water and tunnel linings. The proposed coupling load balancing parallel algorithm is applied to accelerate the calculation procedure. The equations are solved using explicit central difference method. For a large-scale water conveyance tunnel, a full three-dimensional water-tunnel-soil coupling simulation model is established and the dynamic responses under non-uniform seismic excitation are analyzed. The actual conditions such as the nonlinear material properties and the nonlinearity of contact and fluid-structure interaction are taken into account. PML (Perfectly Matched Layer) is used to establish the artificial boundaries to represent the infinite domains. This large-scale nonlinear problem is solved on Dawning 5000A supercomputer by using the proposed method. The feasibility for the simulation of the water-tunnel interaction using ALE method is verified through the comparison with the added mass method. The stress and deformation of the water conveyance tunnel under seismic excitation are analyzed. The influences of the inner water and flexible joints on the tunnel's dynamic responses are discussed. The results show that the maximum hoop stress appears at the cross section near the work shaft and the tunnel fulfills the strength requirements. The oval deformation of the tunnel is within the safe range. The tunnel with full inner water bears larger stresses and the flexible joints can reduce the dynamic responses of the tunnel. The proposed parallel method shows better parallel efficiency.

Key words: water conveyance tunnel, seismic response, ALE, parallel computation, explicit finite element method, PML

中图分类号: 

  • U452.28
[1] Wang Z, Zhang Z. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2013, 45(2):45-55.
[2] 晏启祥, 张煜, 王春艳, 等. 剪切波作用下盾构隧道地震效应的拟静力分析方法研究[J]. 工程力学, 2015, 32(5):184-191. Yan Qixiang, Zhang Yu, Wang Chunyan, et al. Quasi-static analysis method for seismic effect of shear waves on shield tunnel[J]. Engineering Mechanics, 2015, 32(5):184-191. (in Chinese)
[3] Cheng X, Xu W, Yue C, et al. Seismic response of fluid-structure interaction of undersea tunnel during bidirectional earthquake[J]. Ocean Engineering, 2014, 75(1):64-70.
[4] Li P, Song E. Three-dimensional numerical analysis for the longitudinal seismic response of tunnels under an asynchronous wave input[J]. Computers and Geotechnics, 2015, 63(1):229-243.
[5] Sliteen I, Mroueh H, Sadek M. Three-dimensional modeling of the behavior of shallow tunnel under seismic loading[C]//20ème Congrès Français de Mécanique,. Besançon, France:2011:1-6.
[6] 张钰, 潘鹏. 考虑子结构间相互作用的结构地震反应并行计算方法研究[J]. 工程力学, 2013, 30(5):119-123. Zhang Yu, Pan Peng. Parallel computing method for structural seismic response analysis considering interaction between substructures[J]. Engineering Mechanics, 2013, 30(5):119-123. (in Chinese)
[7] 付俊峰, 金生. 用OpenMP实现三维复杂渗流场的并行计算[J]. 工程力学, 2009, 26(12):216-221. Fu Junfeng, Jin Sheng. A parallel computation for 3D complex seepage flow using OpenMP[J].Engineering Mechanics, 2009, 26(12):216-221. (in Chinese)
[8] Dupros F, De Martin F, Foerster E, et al. High- performance finite-element simulations of seismic wave propagation in three-dimensional nonlinear inelastic geological media[J]. Parallel Computing, 2010, 36(5):308-325.
[9] Westergaard H M. Water pressures on dams during earthquakes[J]. Transactions of the American Society of Civil Engineers, 1933, 98(2):418-433.
[10] Housner G W. Dynamic pressures on accelerated fluid containers[J]. Bulletin of the Seismological Society of America, 1957, 47(1):15-35.
[11] 秦念, 周叮, 刘伟庆, 王佳栋. 水平激励下任意截面柱形储液罐内液体的晃动响应[J]. 工程力学, 2015, 32(2):178-182. Qin Nian, Zhou Ding, Liu Weiqing, Wang Jiadong. Sloshing response of liquid in cylindrical tank with arbitrary cross-section under lateral excitations[J]. Engineering Mechanics, 2015, 32(2):178-182. (in Chinese)
[12] 王佳栋, 周叮, 刘伟庆. 带弹性隔板圆柱形储液罐的 流-固耦合特性研究[J]. 工程力学, 2012, 29(6):270-278. Wang Jiadong, Zhou Ding, Liu Weiqing. Study on coupled vibration characteristics of a cylindrical tank with a flexible annual baffle[J]. Engineering Mechanics, 2012, 29(6):270-278. (in Chinese)
[13] Budiansky B. Sloshing of liquids in circular canals and spherical tanks[R]. Lockheed Missiles and Space, Sunnyvale CA:1958.
[14] Karamanos S A, Patkas L A, Platyrrachos M A. Sloshing effects on the seismic design of horizontal-cylindrical and spherical industrial vessels[J]. Journal of Pressure Vessel Technology, 2006, 128(3):328-340.
[15] Karamanos S A, Papaprokopiou D, Platyrrachos M A. Finite element analysis of externally-induced sloshing in horizontal-cylindrical and axisymmetric liquid vessels[J]. Journal of Pressure Vessel Technology, 2009, 131(5):051301.
[16] Cao Y, Wang P, Jin X. Dynamic analysis of flexible container under wind actions by ALE finite-element method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12):881-887.
[17] Zhao C, Chen J, Xu Q. FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading[J]. Nuclear Engineering and Design, 2014, 280(12):372-388.
[18] Legay A, Chessa J, Belytschko T. An Eulerian- Lagrangian method for fluid-structure interaction based on level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17):2070-2087.
[19] Spanos P D, Tsavachidis S. Deterministic and stochastic analyses of a nonlinear system with a Biot visco-elastic element[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(4):595-612.
[20] Basu U. Explicit finite element perfectly matched layer for transient three-dimensional elastic waves[J]. International Journal for Numerical Methods in Engineering, 2009, 77(2):151-176.
[21] Chen J, Jiang L, Li J, et al. Numerical simulation of shaking table test on utility tunnel under non-uniform earthquake excitation[J]. Tunnelling and Underground Space Technology, 2012, 30(4):205-216.
[22] Silverman S, Abramson S. The dynamic behavior of liquids in moving containers[R]. Washington, D.C.:NASA, Report No. SP-106, 1966:13-78.
[23] Mircevska V, Bulaji? I, Manova K. Comparison of added mass method with sophisticated analytical BEM-FEM approach using ADAD-IZIIS software[C]//15 WCEE, Lisboa:2012:1-10.
[24] Hashash Y M A, Hook J J, Schmidt B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4):247-293.
[1] 王峰, 林皋, 周宜红, 赵春菊, 周华维. 非均质材料的扩展无单元Galerkin法模拟[J]. 工程力学, 2018, 35(8): 14-20,66.
[2] 赵小罡, 赵鑫, 温泽峰, 金学松. 轮轨黏着系数对钢轨直裂纹瞬态扩展行为的影响[J]. 工程力学, 2018, 35(5): 239-245.
[3] 姜绍飞, 任晖, 骆剑彬. 基于云计算的框架结构参数并行辨识算法[J]. 工程力学, 2018, 35(4): 135-143.
[4] 袁驷, 袁全, 闫维明, 李易, 邢沁妍. 运动方程自适应步长求解的一个新进展——基于EEP超收敛计算的线性有限元法[J]. 工程力学, 2018, 35(2): 13-20.
[5] 李红豫, 滕军, 李祚华, 张璐. 图形处理器加速算法在复杂高层结构非线性响应分析中的应用[J]. 工程力学, 2018, 35(11): 79-85,91.
[6] 曹胜涛, 李志山, 刘付钧. 一种非比例振型阻尼模型及在大规模非线性分析中的应用[J]. 工程力学, 2018, 35(11): 162-171.
[7] 张菊辉, 管仲国, 陈杨, 王伟, 汪鹏飞. 可提离式桩基础规则连续梁桥的地震响应分析[J]. 工程力学, 2017, 34(6): 190-197.
[8] 王笃国, 赵成刚. 地震波斜入射下考虑场地非线性、地形效应和土结动力相互作用的大跨连续刚构桥地震响应分析[J]. 工程力学, 2017, 34(4): 32-41.
[9] 曾翔, 刘诗璇, 许镇, 陆新征. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊): 113-118.
[10] 楼云锋, 曹源, 杨颜志, 金先龙. 基于混合模型方法的大型输水隧道水锤冲击响应数值分析[J]. 工程力学, 2016, 33(2): 224-231.
[11] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10): 52-61.
[12] 杨勋, 王欢欢, 余克勤, 金先龙. 流-固耦合作用下斜坡式防波堤地震动力响应分析[J]. 工程力学, 2016, 33(10): 248-256.
[13] 龚曙光, 卢海山, 张建平, 唐芳. 基于交叉节点对无网格Galerkin法的改进算法研究[J]. 工程力学, 2015, 32(8): 16-21.
[14] 黄福云, 陈宝春, 李建中, 程浩德. 钢管混凝土单圆管拱结构罕遇地震作用动台阵试验研究[J]. 工程力学, 2015, 32(7): 64-73.
[15] 唐逸豪,高振勋,蒋崇文,李椿萱. 基于LPT近似算法的CFD并行计算网格分配算法[J]. 工程力学, 2015, 32(5): 243-249,256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日