工程力学 ›› 2016, Vol. 33 ›› Issue (9): 250-256.doi: 10.6052/j.issn.1000-4750.2015.06.0523

• 其他工程学科 • 上一篇    

射流控制条件下超声速尾翼弹的气动特性

马杰1, 陈志华1, 孙晓晖2, 薛大文1,3   

  1. 1. 南京理工大学瞬态物理重点实验室, 南京 210094;
    2. 上海宇航系统工程研究所, 上海 201109;
    3. 浙江海洋学院海运与港航建筑工程学院, 舟山 316022
  • 收稿日期:2015-06-16 修回日期:2016-06-15 出版日期:2016-09-25 发布日期:2016-09-25
  • 通讯作者: 陈志华(1967-),男,江苏南京人,教授,双博士,博导,主要从事力学及其应用研究(E-mail:chenzh@mail.njust.edu.cn). E-mail:chenzh@mail.njust.edu.cn
  • 作者简介:马杰(1991-),男,江苏连云港人,博士生,主要从事弹箭飞行力学研究(E-mail:majie19910@163.com);孙晓晖(1985-),男,山东威海人,工程师,博士,主要从事超声速推进技术研究(E-mail:huizi123717@163.com);薛大文(1986-),男,江苏扬州人,讲师,博士,主要从事超声速数值模拟研究(E-mail:dawenjs@163.com).
  • 基金资助:

    国家自然科学基金项目(11272156);江苏省研究生科研创新计划项目(KYLX15_0421)

THE AERODYNAMIC CHARACTERISTICS OF A SUPERSONIC FINNED PROJECTILE UNDER THE CONDITION OF JET CONTROL

MA Jie1, CHEN Zhi-hua1, SUN Xiao-hui2, XUE Da-wen1,3   

  1. 1. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Shanghai Institute of Aerospace System Engineering, Shanghai 201109, China;
    3. School of Naval Architecture and Ocean Engineering, Zhejiang Ocean University, Zhoushan 316022, China
  • Received:2015-06-16 Revised:2016-06-15 Online:2016-09-25 Published:2016-09-25
  • Contact: 10.6052/j.issn.1000-4750.2015.06.0523 E-mail:chenzh@mail.njust.edu.cn

摘要:

研究表明,主动式射流涡流发生器可有效控制超声速流动边界层的分离,且能根据实际情况进行自适应调节。该文基于制式122尾翼弹,通过在弹肩前端加装射流涡发生器控制边界层的流动分离,研究其对尾翼弹气动性能的影响。采用DES方法数值模拟了超声速条件下尾翼弹有无射流控制的流场变化情况,分析了加装射流前后尾翼弹表面流体边界层结构及其气动性能的变化规律。数值结果表明,射流控制可有效抑制弹体表面的流体分离,提高尾翼弹的升力与俯仰力矩、减少弹身震动,有利于提高其飞行稳定性及打击精度,可为超声速尾翼弹的改进提供指导。

关键词: 尾翼弹, 射流, 边界层分离, 稳定性, 气动特性

Abstract:

Previous investigations have shown that an active jet vortex generator can control the flow separation of a supersonic boundary layer effectively, and can be adjusted according to actual situation. In this paper, the jets were mounted at the projectile shoulder of an original standard 122 finned projectile to investigate the flow separation control on the aerodynamic characteristics of the projectile. Numerical simulations were performed with the use of DES method to investigate the supersonic flow fields with and without jets, and the modifications of the boundary layer structures and aerodynamic data for two cases have been compared and discussed. Numerical results show that the jets control can inhibit fluid separation on the surface of a projectile, increase the lift and pitching moment, and reduce the oscillation of projectile body, as a result of improving the flight stability and firing accuracy, which can provide guidance for the improvement of supersonic projectiles.

Key words: finned projectile, jet, boundary layer separation control, stability, aerodynamic characteristics

中图分类号: 

  • V211

[1] Rausch J R, Roberts B B. Reaction control system plume flow field interaction effects on the space shuttle orbiter[C]. San Diego: Proceedings of 10th AIAA and SAE Propulsion Conference, AIAA, 1974: 1104.
[2] Srivastava B. Aerodynamic performance of supersonic missile body and wing tip mounted lateral jets[J]. Journal of Spacecraft and Rockets, 1998, 35(3): 278-286.
[3] 吴小平, 王建文, 武晓松, 等. 含侧喷流炮弹绕流场数值计算[J]. 推进技术, 1998, 19(3): 57-60. Wu Xiaoping, Wang Jianwen, Wu Xiaosong, et al. The numerical computational for external flow field of artillery projectile with side jet flow[J]. Journal of Propulsion Technology, 1998, 19(3): 57-60. (in Chinese)
[4] Margason R J. Fifty years of jet in CROSS flow research in AGARD symposium: on a jet in cross flow[R]. Winchester, England, UK, In AGARD, Computational and Experimental Assessment of Jets in Cross Flow 41 p (SEE N94-2800307-34), 1993: 534.
[5] Selby G V, Lin J C. Howard E G. Control of low-speed turbulent separated flow using jet vortex generators[J]. Experiments in Fluids, 1992, 12(6): 394-400.
[6] 韩子鹏. 弹箭外弹道学[M]. 北京: 北京理工大学出版社, 2008: 150-153. Han Zipeng. External ballistic of projectiles and missiles[M]. Beijing: Beijing Institute of Technology Press, 2008: 150-153. (in Chinese)
[7] 翟英存, 陶国辉, 党明利. 尾翼稳定火箭弹高空气动力与弹道特性研究[J]. 弹箭与制导学报, 2011, 31(2): 142-148. Zhai Yingcun, Tao Guohui, Dang Mingli. Study of tail stable rocket high aerodynamic and ballistic characteristics[J]. Arrows and Guidance, 2011, 31(2): 142-148. (in Chinese)
[8] 刘文生, 周建中. 尾翼式无控火箭飞行稳定性研究[J].江西科学, 2010, 28(6): 820-821. Liu Wensheng, Zhou Jianzhong. Flying stability research of tail-type free rocket[J]. Jiangxi Science, 2010, 28(6): 820-821. (in Chinese)
[9] 薛大文, 陈志华, 张焕好, 张辉. 超声速来流与侧向射流作用下的三维流场结构[J]. 推进技术, 2014, 35(7): 882-890. Xue Dawen, Chen Zhihua, Zhang Huanhao, Zhang Hui. 3D flow structures induced by interaction of supersonic flow with a lateral jet[J]. Journal of Propulsion Technology, 2014, 35(7): 882-890. (in Chinese)
[10] 薛大文, 陈志华, 孙晓晖. 微型三角楔超声速绕流特性的研究[J]. 工程力学, 2013, 30(4): 455-459. Xue Dawen, Chen Zhihua, Sun Xiaohui. Investigations on the flow characteristics of supersonic flow past a micro-ramp[J]. Engineering Mechanics, 2013, 30(4): 455-459. (in Chinese)
[11] 薛大文, 陈志华, 孙晓晖. 翼型绕流分离的微楔控制[J]. 工程力学, 2014, 31(8): 217-222. Xue Dawen, Chen Zhihua, Sun Xiaohui. Micro-ramp control of the boundary separation induced by the flow past an airfoil[J]. Engineering Mechanics, 2014, 31(8): 217-222. (in Chinese)
[12] 张焕好, 陈志华, 孙晓晖, 钱吉胜. 非定常超声速引射流场的数值研究[J]. 工程力学, 2011, 28(9): 228-233. Zhang Huanhao, Chen Zhihua, Sun Xiaohui, Qian Jisheng. Numerical investigations on the unsteady supersonic flow of an ejector[J]. Engineering Mechanics, 2011, 28(9): 228-233. (in Chinese)
[13] Kalatt D, Hruschka R, Leopold F. Numerical and experimental investigation of the magnus effect in supersonic flows[C]. New Orleans, Louisiana: AIAA, Aerodynamics Conference, 2012: 3230.
[14] 马杰, 陈志华, 孙晓晖, 薛大文. 超声速旋转火箭弹气动流场的微楔控制[J]. 工程力学, 2016, 33(6): 250-256. Ma Jie, Chen Zhihua, Sun Xiaohui, Xue Dawen. Miro-wedge control of the flow field of supersonic finned projectiles[J]. Engineering Mechanics, 2016, 33(6): 250-256. (in Chinese)
[15] Ma Jie, Chen Zhihua. Effects of the boattail of a spinning projectile on its aerodynamics characteristics[C]. 5th ICMEM, Yangzhou: Science Press, 2014: 89-94.

[1] 庞辉, 杨军杰, 刘雪. 基于T-S模糊模型的主动悬架滑模容错控制器设计[J]. 工程力学, 2019, 36(2): 229-238,248.
[2] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[3] 汤宏伟, 钟宏志. 考虑杆件初弯曲的网壳弹塑性稳定性的弱形式求积元分析[J]. 工程力学, 2019, 36(1): 165-174.
[4] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[5] 张陆陈, 王余杰, 骆少泽. 射流簇底流消能旋涡区脉动压力特性研究[J]. 工程力学, 2018, 35(S1): 355-358.
[6] 钟委, 骆轲轲, 王涛, 梁天水, 赵军. 隧道火灾中正庚烷池火的火焰振荡特性研究[J]. 工程力学, 2018, 35(9): 240-247.
[7] 刘兴旺, 童根树, 李瑛, 胡焕, 陈东. 深基坑组合型钢支撑梁稳定性分析[J]. 工程力学, 2018, 35(4): 200-207,218.
[8] 李鹏飞, 朱其志, 顾水涛, 倪涛. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41-48.
[9] 唐贞云, 郭珺, 洪越, 李易, 李振宝. 多自由度实时子结构试验系统稳定性分析方法[J]. 工程力学, 2018, 35(3): 22-29.
[10] 姚志勇, 张楠, 夏禾, 李小珍. 基于重叠网格的三维车桥系统气动特性研究[J]. 工程力学, 2018, 35(2): 38-46.
[11] 文颖, 陶蕤. 基于加速度泰勒展开的动力学方程显式积分方法[J]. 工程力学, 2018, 35(11): 26-34.
[12] 潘天林, 吴斌. 基于桁架单元的能量一致积分方法[J]. 工程力学, 2018, 35(10): 1-9,36.
[13] 潘兆东, 谭平, 周福霖. 基于保性能自适应RBF神经网络的MR半主动非线性鲁棒分散控制[J]. 工程力学, 2018, 35(10): 47-55.
[14] 刘欣欣, 唐春安, 龚斌, 于庆磊. 基于DDD离心加载法的黑山铁矿西帮边坡稳定性研究[J]. 工程力学, 2018, 35(1): 191-200.
[15] 王多智, 李文亮, 支旭东. 考虑有檩体系屋面系统的网壳结构静力稳定性分析[J]. 工程力学, 2017, 34(增刊): 71-77,98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日