工程力学 ›› 2017, Vol. 34 ›› Issue (1): 85-91.doi: 10.6052/j.issn.1000-4750.2015.05.0455

• 土木工程学科 • 上一篇    下一篇

不同埋管形式下能量桩热力学特性模型试验研究

王成龙1,2, 刘汉龙1,2, 孔纲强3, 吴迪1,2   

  1. 1. 重庆大学土木工程学院, 重庆 400045;
    2. 重庆大学山地城镇建设与新技术教育部重点实验室, 重庆 400045;
    3. 河海大学土木与交通学院, 江苏, 南京 210098
  • 收稿日期:2015-05-26 修回日期:2015-09-14 出版日期:2017-01-25 发布日期:2017-01-25
  • 通讯作者: 王成龙(1989-),男,河南人,博士生,主要从事岩土工程方面的研究(E-mail:wangchlong586@163.com) E-mail:wangchlong586@163.com
  • 作者简介:刘汉龙(1964-),男,江苏人,长江学者特聘教授,博士,博导,主要从事岩土工程方面的教学与科研(E-mail:hliuhhu@163.com);孔纲强(1982-),男,浙江人,教授,博士,博导,主要从事桩-土相互作用方面的教学与研究(E-mail:gqkong1@163.com);吴迪(1990-),男,山东人,博士生,主要从事能量桩桩-土相互作用方面的研究(E-mail:wudi2009814@163.com)
  • 基金资助:
    国家自然科学基金项目(51378178);教育部博士点联合基金项目(20130094140001);山地城镇建设与新技术教育部重点实验室开放基金项目(0902071812401);重庆大学2015年研究生科研创新项目基金项目

MODEL TESTS ON THERMAL MECHANICAL BEHAVIOR OF ENERGY PILES INFLUENCED WITH HEAT EXCHANGERS TYPES

WANG Cheng-long1,2, LIU Han-long1,2, KONG Gang-qiang3, WU Di1,2   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China;
    2. Key Lab of Chinese Education Ministry For Construction and New Technology of Mountain Cities, Chongqing University, Chongqing 400045, China;
    3. College of Civil and Transportation Engineering Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2015-05-26 Revised:2015-09-14 Online:2017-01-25 Published:2017-01-25

摘要: 桩埋管式地源热泵(也称能量桩)是一种可以节省地下空间和施工埋管费用的新技术,目前在国内外得到了一定的应用。然而,针对其在干砂中的传热特性和力学特性的研究却相对较少。基于模型试验方法,对不同埋管形式下,干砂中钢筋混凝土桩的传热特性及其力学特性进行了对比模型试验研究。试验测得桩体、桩周土体的温度变化规律,桩体应变和桩体热应力的变化规律,并对比分析了温度影响下基桩的极限承载力。试验研究结果表明,同样输入功率条件下,不同埋管形式相比,W型和螺旋型桩的应力变化和桩顶沉降量均较单U型桩要大。

关键词: 能量桩, 埋管形式, 模型试验, 热力学特性, 极限承载力

Abstract: Pile geothermal heat pump system (also called energy pile) is a new heat pump system that can save underground space and construction cost, which to date has been used at home and abroad. However, the studies focusing on the heat transfer efficiency and mechanical characteristics of piles in dry sand are still limited. Based on the model test, the heat transfer performance and mechanical characteristics of different heat exchange concrete piles in dry sand are investigated. The temperature of pile and soil around pile, the thermal strain and thermal stress of the piles induced by temperature variation are measured. Moreover, the ultimate bearing capacity of the piles associated with different temperatures is analyzed. The results show that, for different types of heat exchangers under the same power of pump, the strain variation and pile head settlement of the W-shaped and S-shaped piles are more significant than that of the single U-shaped pile.

Key words: energy pile, heat exchangers types, model test, thermal mechanical behavior, ultimate bearing capacity

中图分类号: 

  • TU473.1
[1] 陈忠购, 赵石娆, 张正威. 内置U形埋管能量桩换热性能研究[J]. 工程力学, 2013, 30(5):238-243. Chen Zhonggou, Zhao Shirao, Zhang Zhengwei. Heat transfer analysis of energy piles with parallel connected U-tubes[J]. Engineering Mechanics, 2013, 30(5):238-243. (in Chinese)
[2] 赵嵩颖, 张柏林, 刘奕彤, 付言. 能量桩换热管不同埋设方式储热模拟研究[J]. 建筑节能, 2013, 40(11):66-67. Zhao Songying, Zhang Bolin, Liu Yitong, Fu Yan. Thermal store simulation of heat exchange tube in energy pile with various embedded manners[J]. Building Energy Efficiency, 2013, 40(11):66-67. (in Chinese)
[3] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1):176-181. Liu Hanlong, Kong Gangqiang, Ng C W W. Review of the applications of energy pile and development of PCC energy pile technical[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1):176-181. (in Chinese)
[4] 桂树强, 程晓辉, 张志鹏. 地源热泵桩基与钻孔埋管换热器换热性能比较[J]. 土木建筑与环境工程, 2013, 35(3):151-156. Gui Shuqiang, Cheng Xiaohui, Zhang Zhipeng. Comparative analysis of heat exchange performance of energy piles and borehole heat exchangers in GSHP system[J]. Journal of Chongqing Jianzhu University, 2013, 35(3):151-156. (in Chinese)
[5] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6):1087-1094. Gui Shuqiang Cheng Xiaohui. In-situ Test for structural responses of energy pile to heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6):1087-1094. (in Chinese)
[6] Gao J, Zhang X, Liu J, et al. Numerical and experimental assessment of thermal performance of vertical energy piles:an application[J]. Applied Energy, 2008, 85(10):901-910.
[7] Jung K, Chun B, Park S, et al. Test Construction of Cast-in-Place concrete energy pile in dredged and reclaimed ground[J]. Journal of Performance of Constructed Facilities, 2013, 29(1):04014035.
[8] Li M, Lai A C. New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory[J]. Energy, 2012, 38(1):255-263.
[9] Yi M, Yang H, Fang Z, et al. Analytical thermal analysis of novel foundation pile ground heat exchanger with spiral coils[C]. Berlin Heidelberg:Springer, 2014:653-663.
[10] McCartney J S, Rosenberg J E, Sultanova A. Engineering performance of thermo-active foundations[C]. GeoTrends:the Progress of Geological and Geotechnical Engineering in Colorado at the Cusp of a New Decade (GPP 6), 2010:27-42.
[11] Yavari N, Tang A M, Pereira J M, et al. Experimental study on the mechanical behavior of a heat exchanger pile using physical modelling[J]. Acta Geotechnica, 2014, 9(3):385-398.
[12] Ng C W W, Shi C, Gunawan A, et al. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay[J]. Géotechnique Letters, 2014, 4(4):310-316.
[13] 黄旭, 孔纲强, 刘汉龙, 等. 循环温度场作用下PCC能量桩热力学特性模型试验[J].岩土力学, 2015, 36(3):667-673. Huang Xu, Kong Gangqiang, Liu Hanlong, et al. Experimental on thermal-mechanical characteristics of PCC energy pile under circular temperature field[J]. Rock and Soil Mechanics, 2015, 36(3):667-673. (in Chinese)
[14] Brandl H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2):81-122.
[15] Laloui L, Nuth M, Vulliet L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8):763-781.
[16] Bourne-Webb P J, Amatya B, Soga K, et al. Energy pile test at Lambeth College, London:geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3):237-248.
[17] Wang B, Bouazza A, Singh R M, et al. Post temperature effects on shaft capacity of a full-scale geothermal energy pile[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 141(4):04014125.
[18] Akrouch G A, Sánchez M, Briaud J L. Thermomechanical behavior of energy piles in high plasticity clays[J]. Acta Geotechnica, 2014. 9(3):399-412.
[19] Murphy K D, Mccartney J S, Henry K H. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2015, 10(2):179-195.
[20] Knellwolf C, Peron H, Laloui L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10):890-902.
[21] Bourne-Webb P J, Amatya B, and Soga K. A framework for understanding energy pile behavior. Proceedings of the Institution of Civil Engineers[J]. Geotechnical Engineering, 2012, 166(2):170-177.
[22] Mimouni T, Laloui L. Towards a secure basis for the design of geothermal piles[J]. Acta Geotechnica, 2014, 9(3):355-366.
[23] GB 50010-2010, 混凝土结构设计规范[S]. 北京:机械工业出版社, 2011. GB 50010-2010, Code for design of concrete structure[S]. Beijing:China Machine Press, 2011. (in Chinese)
[24] Mccartney J S, Rosenberg J E. Impact of heat exchange on side shear in thermo-active foundations[J]. Geo-Frontiers, 2011:488-498.
[25] Rosenberg J E. Centrifuge modeling of soil-structure interaction in thermo-active foundations[D]. Ann Arbor:University of Colorado At Boulder, 2010.
[26] Olgun C G, Ozudogru T Arson C F. Thermo-mechanical radial expansion of heat exchanger piles and possible effects on contact pressures at pile-soil interface[J]. Géotechnique Letters, 2014, 4:170-178.
[27] Kramer C A, Basu P. Performance of a model geothermal pile in sand[C]//Perth, Australia, Jan:Proceedings of 8th International Conference on Physical Modelling in Geotechnics, 2014:14-17.
[1] 张陆陈, 王余杰, 骆少泽. 射流簇底流消能旋涡区脉动压力特性研究[J]. 工程力学, 2018, 35(S1): 355-358.
[2] 朱崇绩, 董毓利. 火灾下邻边简支邻边固支双向板极限承载力的能量计算法[J]. 工程力学, 2018, 35(8): 67-78,99.
[3] 石吉森, 凌道盛, 徐泽龙, 黄博. 倾斜场地中逆断层错动对上覆土体影响的模型试验研究[J]. 工程力学, 2018, 35(7): 194-207.
[4] 范重, 刘云博, 王祥臻, 吴徽, 王义华. 连梁骨架曲线与滞回特性研究[J]. 工程力学, 2018, 35(6): 68-77,87.
[5] 陈庆发, 赵富裕, 陈青林, 王玉丁. 基于室内模型试验的多漏斗同步放矿柔性隔离层材料受力特性分析[J]. 工程力学, 2018, 35(11): 240-248.
[6] 张中昊, 支旭东, 李奇训, 汪恩良. 新型索撑式单层球面网壳选型与预应力张拉模拟研究[J]. 工程力学, 2018, 35(10): 193-202,211.
[7] 黄明, 付俊杰, 陈福全, 江松. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 172-182.
[8] 毛文婧, 史艳莉, 王文达. 内配型钢圆钢管混凝土轴压短柱在不同含钢率下承载力分析[J]. 工程力学, 2017, 34(增刊): 63-70.
[9] 苏庆田, 林航, 杜霄, 曾明根. 波形钢腹板导梁局部承压的加强构造与试验[J]. 工程力学, 2017, 34(增刊): 78-83.
[10] 安宇骢, 谢楠, 贾影. 防连续倒塌高大模板支撑体系的两阶段设计研究[J]. 工程力学, 2017, 34(增刊): 289-294.
[11] 乔朋, 狄谨, 秦凤江. 单箱多室波形钢腹板组合箱梁的腹板剪应力分析[J]. 工程力学, 2017, 34(7): 97-107.
[12] 徐礼华, 许明耀, 周鹏华, 刘素梅, 谷雨姗, 吴敏. 钢管自应力自密实高强混凝土柱偏心受压性能试验研究[J]. 工程力学, 2017, 34(7): 166-176.
[13] 郭莹, 刘界鹏, 苗亚军, 王宇航, 许天祥. 圆CFRP-钢复合管约束混凝土短柱轴压试验研究[J]. 工程力学, 2017, 34(6): 41-50.
[14] 江学良, 牛家永, 连鹏远, 文畅平, 王飞飞. 含小净距隧道岩石边坡地震动力特性的大型振动台试验研究[J]. 工程力学, 2017, 34(5): 132-141,147.
[15] 刘君平, 周宗源, 刘永健, 陈宝春. 具有PBL加劲的方钢管混凝土构件受弯性能[J]. 工程力学, 2017, 34(12): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日