工程力学 ›› 2016, Vol. 33 ›› Issue (12): 248-256.doi: 10.6052/j.issn.1000-4750.2015.04.0364

• 其他工程学科 • 上一篇    

风力机翼型在复合运动下的动态失速数值分析

刘雄1, 梁湿1,2   

  1. 1. 汕头大学工学院, 汕头 515063;
    2. 三一重型能源装备有限公司, 长沙 410100
  • 收稿日期:2015-04-30 修回日期:2016-01-11 出版日期:2016-12-25 发布日期:2016-12-25
  • 通讯作者: 梁湿(1987-),男,湖南人,工程师,工学硕士,主要从事风能利用研究(E-mail:liangshi87@hotmail.com). E-mail:liangshi87@hotmail.com
  • 作者简介:刘雄(1975-),男,湖南人,教授,博士,博导,主要从事风能利用研究(E-mail:lx@stu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51276106);教育部高等学校博士点科研基金项目(20124402110005);教育部科学技术研究重点项目(212130)

NUMERICAL INVESTIGATION ON DYNAMIC STALL OF WIND TURBINE AIRFOIL UNDERGOING COMPLEX MOTION

LIU Xiong1, LIANG Shi1,2   

  1. 1. School of Engineering, Shantou University, Shantou 515063, China;
    2. Sany Heavy Energy Equipment Co., LTD, Changsha 410100, China
  • Received:2015-04-30 Revised:2016-01-11 Online:2016-12-25 Published:2016-12-25

摘要: 现代大型风力机在工作时叶片经历大变形与振动,将会对其周围的动态流场产生影响,从而导致气动力的改变。因此有必要深入研究风力机翼型在复合运动情况下的动态失速气动特性,以正确预测大型风力机运行时的载荷。该文应用计算流体力学方法,对S809翼型在不同运动形式下的动态失速特性进行了二维数值分析。首先对翼型在作俯仰运动下的轻失速和深失速情况分别结合S-A、SST k-ω和RSM三种湍流模型进行了动态失速数值模拟,结果表明S-A、SST k-ω和RSM三种湍流模型都能有效地计算出翼型的气动力。然后采用SST k-ω模型仿真了翼型在挥舞运动、俯仰摆振耦合运动下的动态失速气动特性,并与相同工况条件下翼型作俯仰运动时的气动特性进行了对比分析。发现翼型在挥舞运动下的动态失速虽然弱于俯仰运动,但其强度不容忽视;而翼型在作俯仰与摆振耦合运动时比单纯作俯仰运动时的失速程度更深。因此在风力机设计阶段为获得保守的气动载荷预测,有必要将叶片截面在挥舞与摆振方向的运动转换成等效攻角,叠加在主攻角上进行动态失速气动力计算。

关键词: 风力机, 空气动力学, 翼型, 动态失速, CFD模拟

Abstract: The blade of large-scale wind turbine undergoes significant deflection and vibration during operation, which will impact the dynamic flow field around the blade and consequently alter the aerodynamic forces. Therefore, it is important to develop a deep understanding of the dynamic stall characteristics of airfoil undergoing complex motion, so that the operational loading of large-scale wind turbines can be accurately predicted. Applying computational fluid dynamics (CFD) techniques, this paper presents 2-dimensional numerical simulations of the dynamic stall characteristics of S809 airfoil undergoing different forms of motion. Firstly the dynamic stall behavior of the airfoil undergoing pitching motion in stall-development and deep-stall regimes is simulated using S-A, SST k-ω and RSM turbulence models. Comparisons with the experimental measurements indicate that all the three turbulence models can effectively predict the unsteady aerodynamic forces of the airfoil. Subsequently, the dynamic stall characteristics of the airfoil undergoing flapwise motion and combined pitching edgewise motion are simulated using SST k-ω model. The results are compared with those obtained by considering only pitching motion in the same condition. The dynamic stall of airfoil undergoing flapwise motion is weaker than that of airfoil undergoing pitching motion, but it is considerable and cannot be neglected. The dynamic stall of airfoil undergoing combined pitching edgewise motion is much stronger than that of airfoil undergoing pitching motion. The results suggest that in the design stage of a wind turbine, in order to obtain a conservative aerodynamic loading prediction, it is necessary to translate the motion of the blade cross-section in flapwise and edgewise directions into an equivalent angle of attack, and superimpose it on the main angle of attack to perform the dynamic stall calculation.

Key words: wind turbine, aerodynamics, airfoil, dynamic stall, CFD modelling

中图分类号: 

  • TK83
[1] Holierhoek J G, De Vaal J B, Van Zuijlen A H, et al. Comparing different dynamic stall models[J]. Wind Energy, 2013, 16(1):139-158.
[2] Choudhry A, Leknys R, Arjomandi M, et al. An insight into the dynamic stall lift characteristics[J]. Experimental Thermal and Fluid Science, 2014, 58(7):188-208.
[3] Zanon A, Giannattasio P, Ferreira C S, et al. Wake modelling of a VAWT in dynamic stall:impact on the prediction of flow and induction fields[J]. Wind Energy, 2015, 18(11):1855-1874.
[4] 白鹏, 崔尔杰, 周伟江, 李锋. 等速上仰翼型动态失速现象研究[J]. 力学学报, 2004, 36(5):569-576. Bai Peng, Cui Erjie, Zhou Weijiang, Li Feng. Investigation of the dynamic stall about the pitching airfoil[J]. Acta Mechanica Sinica, 2004, 36(5):569-576. (in Chinese)
[5] 伍艳, 谢华, 王同光. 风力机叶片的非定常气动特性计算方法的改进[J]. 工程力学, 2008, 25(10):54-59. Wu Yan, Xie Hua, Wang Tongguang. Modification of calculating unsteady aerodynamic characteristics of wind turbine blades[J]. Engineering Mechanics, 2008, 25(10):54-59. (in Chinese)
[6] 刘雄, 梁湿, 陈严, 张石强, 陈淳. 风力机翼型动态失速气动特性仿真[J]. 工程力学, 2015, 32(3):203-211. Liu Xiong, Liang Shi, Chen Yan, Zhang Shiqiang, Chen Chun. Dynamic stall simulation of wind turbine airfoils[J]. Engineering Mechanics, 2015, 32(3):203-211. (in Chinese)
[7] 刘雄, 张宪民, 陈严, 等. 基于BEDDOES-LEISHMAN动态失速模型的水平轴风力机动态气动载荷计算方法[J]. 太阳能学报, 2008, 29(12):1449-1455. Liu Xiong, Zhang Xianmin, Chen Yan, et al. Transient aerodynamic load prediction of horizontal axis wind turbine based on the Beddoes-Leishman model[J]. Acta Energiae Solaris Sinica, 2008, 29(12):1449-1455. (in Chinese)
[8] 陈旭, 郝辉, 田杰, 杜朝辉. 水平轴风力机翼型动态失速特性的数值研究[J]. 太阳能学报, 2003, 24(6):735-740. Chen Xu, Hao Hui, Tian Jie, Du Zhaohui. Investigation on airfoil dynamic stall of horizontal axis wind turbine[J]. Acta Energiae Solaris Sinica, 2003, 24(6):735-740. (in Chinese)
[9] Tarzanin F J. Prediction of control loads due to blade stall[J]. Journal of the American Helicopter Society, 1972, 17(2):33-46.
[10] Leishman J G, Beddoes T S. A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society, 1989, 34(3):3-17.
[11] Tran C T, Petot D. Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of response of a helicopter blade in forward flight[J]. Vertica, 1981, 5(1):35-53.
[12] Øye S. Dynamic stall simulated as time lag of separation[D]. Denmark:Department of Fluid Mechanics, Technical University of Denmark, 1991.
[13] Larsen J W, Nielsen S R, Krenk S, et al. Dynamic stall model for wind turbine airfoils[J]. Journal of Fluids and Structures, 2007, 23(7):959-982.
[14] Urbina R, Peterson M L, Kimball R W, et al. Modeling and validation of a cross flow turbine using free vortex model and a modified dynamic stall model[J]. Renewable Energy, 2013, 50(2):662-669.
[15] Pereira R, Schepers G, Pavel M D, et al. Validation of the Beddoes-Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data[J]. Wind Energy, 2013, 16(2):207-219.
[16] 王清, 招启军, 赵国庆. 旋翼翼型动态失速流场特性PIV试验研究及L-B模型修正[J]. 力学学报, 2014, 46(4):631-635. Wang Qing, Zhao Qijun, Zhao Guoqing. PIV experiments on flowfield characteristics of rotor airfoil dynamic stall and modifications of L-B model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):631-635. (in Chinese)
[17] 钱炜祺, 符松, 蔡金狮. 翼型动态失速的数值研究[J]. 空气动力学学报, 2001, 19(4):427-433. Qian Weiqi, Fu Song, Cai Jinshi. Numerical study of airfoil dynamic stall[J]. Acta Aerodynamica Sinica, 2001, 19(4):427-433. (in Chinese)
[18] Martinat G, Braza M, Harran G, et al. Dynamic stall of a pitching and horizontally oscillating airfoil[C]. IUTAM Symposium on Unsteady Separated Flows and their Control. Kerkyra, June 18-22, 2007:395-403.
[19] Gharali K, Johnson D C. Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity[J]. Journal of Fluids and Structures, 2013, 42(7):228-244.
[20] Liu P, Yu G, Zhu X, et al. Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modelling[J]. Renewable Energy, 2014, 69(9):402-409.
[21] Glaz B, Liu L, Friedmann P P, et al. A surrogate based approach to reduced-order dynamic stall modelling[J]. Journal of The American Helicopter Society, 2012, 57(2):1-9.
[22] Liu X, Zhang X, Li G, Chen Y, Ye Z. Dynamic response analysis of the rotating blade of horizontal axis wind turbine[J]. Wind Engineering, 2010, 34(5):543-560.
[23] Ramsay R R, Hoffmann M J, Gregorek G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[NREL/TP-442-7817][R]. Columbus:The Ohio State University, 1995.
[24] 刘雄, 陈严, 叶枝全. 增加风力机叶片翼型后缘厚度对气动性能的影响[J]. 太阳能学报, 2006, 27(5):489-495. Liu Xiong, Chen Yan, Ye Zhiquan. Analysis on the influence of aerodynamic performance when enlarging the airfoil's trailing edge thickness[J]. Acta Energiae Solaris Sinica, 2006, 27(5):489-495. (in Chinese)
[1] 毕继红, 乔浩玥, 关健, 王剑. 带有纵向肋条斜拉索的风雨激振减振机理研究[J]. 工程力学, 2018, 35(4): 168-175.
[2] 孙虎跃, 叶继红. 基于PIV技术的平屋盖表面分离泡流动结构研究[J]. 工程力学, 2016, 33(11): 121-131.
[3] 曹九发,王同光,柯世堂. 基于自由涡尾迹方法的大型风力机动态响应和尾迹研究[J]. 工程力学, 2015, 32(9): 250-256.
[4] 柯世堂, 王同光, 胡丰, 赵林, 葛耀君. 基于塔架-叶片耦合模型风力机全机风振疲劳分析[J]. 工程力学, 2015, 32(8): 36-41.
[5] 任旭东,赵子杰,高超,李峰. NACA0012翼型抖振现象实验研究[J]. 工程力学, 2015, 32(5): 236-242.
[6] 刘雄,梁湿,陈严,张石强,陈淳. 风力机翼型动态失速气动特性仿真[J]. 工程力学, 2015, 32(3): 203-211.
[7] 李波, 杨庆山, 冯少华. 防风栅对高速列车挡风作用的数值模拟[J]. 工程力学, 2015, 32(12): 249-256.
[8] 楼文娟, 余江, 潘小涛. 风力机叶片挥舞摆振气弹失稳分析[J]. 工程力学, 2015, 32(11): 236-242.
[9] 薛大文, 陈志华, 孙晓晖, 陈耀慧. 翼型绕流分离的微楔控制[J]. 工程力学, 2014, 31(8): 217-222.
[10] 刘振东,李源,喻磊,毛树果,孙艳军. 基于CFD技术的螺旋桨风机气流速度场数值模拟研究[J]. 工程力学, 2013, 30(6): 346-352.
[11] 刘晓洲,檀永刚,李洪升,白会人. 水库护坡静冰压力及断裂韧度测试研究[J]. 工程力学, 2013, 30(5): 112-117.
[12] 张 旭,邢静忠. 叶片局部损伤对大型水平轴风力机静动态特性影响的仿真分析[J]. 工程力学, 2013, 30(2): 406-412.
[13] 蔡 新,朱 杰,潘 盼. 水平轴风力机叶片最优体型设计[J]. 工程力学, 2013, 30(2): 477-480.
[14] 周超英,纪文英,张兴伟,邓立君. 球头体逆向喷流减阻的数值模拟研究[J]. 工程力学, 2013, 30(1): 441-447.
[15] 梅元贵, 许建林, 赵鹤群, 沈瀛. 侧风环境下高速列车外部流场数值模拟方法研究[J]. 工程力学, 2012, 29(6): 253-258,278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日