工程力学 ›› 2016, Vol. 33 ›› Issue (12): 12-20.doi: 10.6052/j.issn.1000-4750.2015.04.0331

• 基本方法 • 上一篇    下一篇

杆系结构非线性后屈曲分析的增量割线刚度法

文颖1,2, 孙明文1, 李特1, 曾庆元1,2   

  1. 1. 中南大学土木工程学院, 长沙 410075;
    2. 重载铁路工程结构教育部重点实验室, 长沙 410075
  • 收稿日期:2015-04-22 修回日期:2016-01-25 出版日期:2016-12-25 发布日期:2016-12-25
  • 通讯作者: 文颖(1981-),男,湖南人,副教授,博士,重载铁路工程结构教育部重点实验室副主任,主要从事桥梁稳定极限承载力及车桥系统振动稳定性研究(E-mail:ywen_ce@csu.edu.cn). E-mail:ywen_ce@csu.edu.cn
  • 作者简介:孙明文(1993-),男,黑龙江人,硕士生,主要从事大跨度桥梁非线性分析研究(E-mail:15675899456@163.com);李特(1989-),男,湖南人,硕士生,主要从事大跨度桥梁非线性分析研究(E-mail:236815783@qq.com);曾庆元(1925-2016),男,江西人,教授,博导,中国工程院院士,主要从事桥梁结构稳定与车桥系统振动研究(E-mail:zengqy@cae.cn).
  • 基金资助:
    国家自然科学基金项目(51108460,51478475);中国博士后科学基金面上项目(2012M511759);湖南省科技计划项目(2014FJ6036)

NONLINEAR POST-BUCKLING ANALYSIS OF TRUSS STRUCTURES USING AN INCREMENTAL SECANT STIFFNESS APPROACH

WEN Ying1,2, SUN Ming-wen1, LI Te1, ZENG Qing-yuan1,2   

  1. 1. School of Civil Engineering, Central South University, Changsha 410075, China;
    2. The Key Laboratory of Engineering Structure of Heavy Railway, Ministry of Education, Changsha 410075, China
  • Received:2015-04-22 Revised:2016-01-25 Online:2016-12-25 Published:2016-12-25

摘要: 基于结构构件刚体运动与其变形抗力无关原理,假定构件经历与经典Updated-Lagrangian列式隐含的“微小自然变形-刚体运动”顺序相反的运动过程,建立空间杆系结构几何非线性分析的势能增量列式,推导了适用于典型增量步有限位移、有限应变分析的割线刚度矩阵。克服了Updated-Lagrangian列式下高阶非线性刚度矩阵推导过程繁琐及表达式不唯一等问题。该文提出的增量割线刚度既能预测位移(与协同转动法使用的割线刚度相比),又能较精确校正变形恢复力,列式简便而易于实际应用(与拉格朗日列式使用的割线刚度相比)。为了提升数值追踪算法追踪各类型平衡路径的通过能力及计算效率,提出非线性方程求解的增量割线刚度法:应用增量割线刚度矩阵作为非线性分析“预测”和“校正”算子,建立基于柱面弧长约束的直接迭代策略,提出适应多回路路径的荷载因子自动调整算法实现自动加载。经典算例验证了增量割线刚度法能有效防止路径追踪“回溯”,快速收敛到正确解,可靠地反映杆系结构受力全过程行为。

关键词: 几何非线性, 高效列式, 增量割线刚度, 直接迭代法, 自动加载技术

Abstract: Based on the basic principle that the deformational resistance of a structural member is independent of the rigid body motion, an incremental potential energy formulation has been redeveloped for geometrically nonlinear analysis of spatial truss structures by assuming that a truss member undergoes a reversed process of "natural deformation-rigid body motion" implied by the Updated-Lagrangian formulation. A secant stiffness matrix has been derived to solve finite displacement and finite strain problem in a typical incremental step of the nonlinear post-buckling analysis using the proposed energy method. Such a procedure effectively overcomes the issues in the Updated Lagrangian approaches related to the tediously obtained, inconsistent high-order stiffness matrices. Alternatively, the recommended secant stiffness matrix is capable of predicting nonlinear responses that are impossible by using the secant stiffness operator defined in the co-rotated configuration and accurately, yet in a simple manner, recovering member forces as compared with the high-order stiffness matrices. In this sense, to improve the robustness of numerical algorithms for a reliable path tracking as well as iteration efficiency, an incremental secant stiffness approach is presented for solving nonlinear problems in which the proposed secant stiffness matrix plays a common role in both the ‘predictor’ and ‘corrector’ in a typical iterative step. As a result, a direct iteration scheme with the cylindrical arc-length constraint is established to ensure a converged solution in arbitrary regions of the equilibrium path. An automatic loading technique that can suitably adjust the step size is therefore put forward for tracing the path with multiple loops. The results from benchmark examples demonstrate the capabilities of the secant stiffness approach for completely removing the ‘turning back’ of the solution direction, making a fast convergence to correct solutions and reliably indicating the full-range behavior of truss structures.

Key words: geometric nonlinearity, efficient formulation, incremental secant stiffness, direct iteration scheme, automatic loading technique

中图分类号: 

  • TU311.2
[1] Timoshenko S P, Gere J M. Theory of elastic stability[M]. 2nd ed. New York:McGraw-Hill, Inc., 1961:144-152.
[2] 陈政清. 梁杆结构几何非线性有限元的数值实现方法[J]. 工程力学, 2014, 31(6):42-52. Chen Zhengqing. Numerical implementation of geometrically nonlinear finite element method for beam structures[J]. Engineering Mechanics, 2014, 31(6):42-52. (in Chinese)
[3] Leu L J, Yang Y B. Effects of rigid body and stretching on nonlinear analysis of trusses[J]. Journal of Structural Engineering (ASCE), 1990, 116(10):2582-2598.
[4] Torkamani M A M, Shieh J H. High-order stiffness matrices in nonlinear finite element analysis of plane truss structures[J]. Engineering Structures, 2011, 33(12):3516-3526.
[5] 刘树堂. 等直杆单元切线刚度矩阵的精确分析方法[J]. 计算力学学报, 2014, 31(1):48-53. Liu Shutang. Accurate analysis method on the tangent stiffness matrix of pinned straight rod element[J]. Chinese Journal of Computational Mechanics, 2014, 31(1):48-53. (in Chinese)
[6] Jayachandran S A, Kalyanaraman V, Narayanan R. A co-rotational based secant matrix procedure for elastic postbuckling analysis of truss structures[J]. International Journal of Structural Stability and Dynamics, 2004, 4(1):1-19.
[7] Faroughi S, Khodaparast H H, Frishwell M I. Nonlinear dynamic analysis of tensegrity structures using a co-rotational method[J]. International Journal of Nonlinear Mechanics, 2015, 69:55-65.
[8] Yang Y B, Leu L J, Yang J P. Key considerations in tracing the postbuckling response of structures with multiple winding loops[J]. Mechanics of Advanced Materials and Structures, 2007, 14(3):175-189.
[9] Yang Y B, Leu L J. Postbuckling analysis of truss with various Lagrangian formulations[J]. AIAA Journal, 1990, 28(5):946-948.
[10] Shi H, Salim H, Shi Y, Wei F. Geometric and material nonlinear static and dynamic analysis of space truss structures[J]. Mechanics Based Design of Structures and Machines, 2015, 43(1):38-56.
[11] Meek J L. Computer methods in structural analysis[M]. New York:CRC Press, 1990:241-246.
[12] Borst R D, Crisfield M A, Remmers J J C, Verhoosel C V. Nonlinear finite element analysis of solids and structures[M]. 2nd ed. Chichster:John Wiley & Sons, 2012:120-121.
[13] Thai H T, Kim S E. Large deflection inelastic analysis of space trusses using generalized displacement control method[J]. Journal of Constructional Steel Research, 2009, 65(3):1987-1994.
[14] Yang Y B, Lin S P, Leu L J. Solution strategy and rigid element for nonlinear analysis of elastically structures based on updated Lagrangian formulation[J]. Engineering Structures, 2007, 29(6):1189-1200.
[15] Krenk S, Hededal O. A dual orthogonality procedure for nonlinear finite element equations[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 123(1/2/3/4):95-107.
[16] 齐朝晖, 孔宪超, 方慧青. 细长结构几何非线性分析的子结构方法[J].计算力学学报, 2013, 30(6):757-762. Qi Zhaohui, Kong Xianchao, Fang Huiqing. Substructure method in geometric nonlinear analysis of slender structures[J]. Chinese Journal of Computational Mechanics, 2013, 30(6):757-762. (in Chinese)
[1] 孙宝印, 古泉, 张沛洲, 欧进萍. 考虑P-Δ效应的框架结构弹塑性数值子结构分析[J]. 工程力学, 2018, 35(2): 153-159.
[2] 刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.
[3] 齐念, 叶继红. 弹性DEM方法在杆系结构中的应用研究[J]. 工程力学, 2017, 34(7): 11-20.
[4] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.
[5] 谷良贤, 王一凡. 几何非线性假设下温度大范围变化瞬态热力耦合问题研究[J]. 工程力学, 2016, 33(8): 221-230.
[6] 王少钦, 马骎, 夏禾, 郭薇薇. 风-列车-大跨度悬索桥系统非线性耦合振动分析[J]. 工程力学, 2016, 33(12): 150-157.
[7] 谢长川, 胡锐, 王斐, 刘燚, 常楠. 大展弦比柔性机翼气动弹性风洞模型设计与试验验证[J]. 工程力学, 2016, 33(11): 249-256.
[8] 王刚, 齐朝晖, 孔宪超. 含机构位移起重机主副臂组合臂架结构几何非线性分析[J]. 工程力学, 2015, 32(7): 210-218.
[9] 邓继华, 邵旭东, 谭平. 几何非线性与徐变共同作用下三维杆系结构有限元分析[J]. 工程力学, 2015, 32(6): 117-123.
[10] 文颖, 李特, 曾庆元. 柔性梁几何非线性/后屈曲分析的改进势能列式方法研究[J]. 工程力学, 2015, 32(11): 18-26.
[11] 刘燚,谢长川,王立波,胡锐,杨超. 柔性飞机大变形曲面气动力计算及配平分析[J]. 工程力学, 2015, 32(10): 239-249.
[12] 潘天林,吴斌,郭丽娜,陈永盛. 能量守恒逐步积分方法在工程结构动力分析中的应用[J]. 工程力学, 2014, 31(9): 21-27.
[13] 陈政清. 梁杆结构几何非线性有限元的数值实现方法[J]. 工程力学, 2014, 31(6): 42-52.
[14] 王振, 孙秦. 基于共旋三角形厚薄通用壳元的几何非线性分析[J]. 工程力学, 2014, 31(5): 27-33.
[15] 田利,李宏男,侯和涛. SMART-1台阵地震动激励下输电塔线体系反应分析[J]. 工程力学, 2013, 30(增刊): 273-278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日