工程力学 ›› 2016, Vol. 33 ›› Issue (11): 249-256.doi: 10.6052/j.issn.1000-4750.2015.04.0254

• 其他工程学科 • 上一篇    

大展弦比柔性机翼气动弹性风洞模型设计与试验验证

谢长川1, 胡锐1, 王斐2, 刘燚1, 常楠2   

  1. 1. 北京航空航天大学航空科学与工程学院, 北京 100191;
    2. 中航工业成都飞机设计研究所, 成都 610041
  • 收稿日期:2015-04-02 修回日期:2015-09-14 出版日期:2016-11-25 发布日期:2016-11-25
  • 通讯作者: 谢长川(1976-),男,陕西人,讲师,博士后,主要从事气动弹性力学与飞行器设计研究(E-mail:xiechangc@163.com). E-mail:xiechangc@163.com
  • 作者简介:胡锐(1990-),男,陕西人,硕士生,主要从事气动弹性力学及飞行动力学研究(E-mail:hurui0307@163.com);王斐(1988-),男,四川人,助理工程师,硕士,主要从事气动弹性力学及结构优化研究(E-mail:362049289@qq.com);刘燚(1988-),女,陕西人,博士生,主要从事气动弹性力学及空气动力学研究(E-mail:liuyibuaa@126.com);常楠(1982-),男,安徽人,高工,博士,主要从事飞机结构设计研究(E-mail:changnanah@163.com).

AEROELASTIC WIND TUNNEL TEST MODEL DESIGN AND EXPERIMENT ON VERY FLEXIBLE HIGH-ASPECT-RATIO WINGS

XIE Chang-chuan1, HU Rui1, WANG Fei2, LIU Yi1, CHANG Nan2   

  1. 1. School of Aeronautics Science and Engineering, Beihang University, Beijing 100191, China;
    2. AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610041, China
  • Received:2015-04-02 Revised:2015-09-14 Online:2016-11-25 Published:2016-11-25

摘要: 大展弦比柔性机翼飞机的气动弹性是当前理论研究的热点,而风洞试验研究则是揭示大变形气动弹性运动机理和验证理论方法的必要手段。该文建立了能够考虑几何非线性特点的大展弦比柔性机翼风洞试验模型结构设计方案。该方案设计结合几何非线性气动弹性理论分析与模型地面试验,在确保分析模型与理论模型一致的基础上,进行了实物模型的气动弹性风洞试验。风洞试验结果表明大展弦比柔性机翼的结构大变形效应对其气动弹性特性产生了一定影响,大变形导致结构水平弯曲模态发生失稳进而降低了模型的颤振速度,与几何非线性气动弹性分析结果一致。试验颤振速度、颤振模态均与理论分析结果吻合,验证了该文几何非线性气动弹性分析方法的准确性。

关键词: 大展弦比, 风洞试验, 气动弹性, 模型设计, 几何非线性

Abstract: The aeroelastic characteristics for a very flexible aircraft is the focus of present theoretical research, and the wind tunnel experiment is the necessary way to view the mechanism of large aeroelastic motion and to validate the theoretic method. In order to study the influence for geometric nonlinearity of high-aspect-ratio wings, a wind tunnel model is designed and constructed. With the combination of the theoretic analysis of geometric nonlinear aeroelasticity and the vibration test of the model, the aeroelastic wind tunnel test is performed on the base of consistency between the analysis model and the test model. The experiment results show that the large deformation of a high aspect ratio wing will affect the aeroelastic property to some extent. The large deformation causes the instability of the horizontal bending mode and decreases the flutter speed, which are coincident with the predictions by the nonlinear aeroelastic theoretic method. The flutter speed and the flutter mode are all in a good agreement with those of the theoretic method. Thusly, the availability and accuracy for the geometric nonlinear aeroelastic analysis method is verified.

Key words: high-aspect-ratio, wind tunnel test, aeroelasticity, model design, geometric nonlinearity

中图分类号: 

  • V211.47
[1] Mayuresh J Patil, Dewey H Hodges. On the importance of aerodynamics and structural geometrical nonlinear-ties in aeroelastic behavior of high-aspect-ratio wings[C]. Atlanta, GA, 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and Exhibit, 2000.
[2] Ventres C S, Dowell E H. Comparison of theory and experiment for nonlinear flutter of loaded plates[J]. AIAA Journal, 1970, 8(11):2022-2030.
[3] Tang D M, Dowell E H. Experimental and theoretical study for nonlinear aeroelastic behavior of a flexible rotor blade[J]. AIAA Journal, 1993, 31(6):1134-1142.
[4] Deman Tang, Earl H Dowell. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wing[J]. AIAA Journal, 2001, 39(8):1431-1441.
[5] Chang Chongseok, Hodges Dewey H. Modeling of ground vibration testing for highly flexible aircraft[C]. Newport, Rhode Island, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006.
[6] Britt Robert T, Ortega Daniel. Wind tunnel test of a very flexible aircraft wing[C]. Honolulu, Hawaii, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2012.
[7] 谢长川. 飞行器气动弹性稳定性静/动耦合理论与试验研究[D]. 北京:北京航空航天大学航空科学与工程学院, 2009. Xie Changchuan. Statics/dynamics coupling theory and test dtudy of aircraft aeroelastic stability[D]. Beijing:School of Aeronautics Science and Engineering of Beihang University, 2009. (in Chinese)
[8] Xie Changchuan. Liu Yi, Yang Chao. Theoretic analysis and experiment on aeroelasticity of very flexible wing[J]:Science China Technological Sciences, 2012, 55(9):2489-2500.
[9] 管德. 飞机气动弹性力学手册[M]. 北京:航空工业出版社, 1994:224-228. Guan De. Aircraft aeroelasticity manual[M]. Beijing:Aviation Industry Press, 1994:224-228. (in Chinese)
[10] Georg Charmbalis, Julian Londono, Jonathan E Cooper. Testing of aeroelastic structures containing geometric stiffness nonlinearities[C]. Boston, Massachusetts, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013.
[11] Xie C C, Yang C. Linearization method of nonlinear aeroelastic stability for complete aircraft with highaspect-ratio wings[J]. Science China Technological Sciences, 2011, 54(2):403-411.
[12] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京:清华大学出版社, 1997. Wang Xucheng, Shao Min. Foundation and numerical method of finite element method[M]. Beijing:Tsinghua University Press, 1997. (in Chinese)
[13] Xie Changchuan, Wang Libo, Yang Chao, Liu Yi. Static aeroelastic analysis of very flexible wings based on non-planar vortex lattice method[J]. Chinese Journal of Aeronautics, 2013, 26(3):514-521.
[14] 刘燚, 谢长川, 王立波, 胡锐, 杨超. 柔性飞机大变形曲面气动力计算及配平分析[J]. 工程力学, 2015, 32(10):239-249. Liu Yi, Xie Changchuan, Wang Libo, Hu Rui, Yang Chao. Nonplanar aerodynamic computation and trim analysis under large deflection of flexible aircraft.[J] Engineering Mechanics, 2015, 32(10):239-249. (in Chinese)
[15] 管德. 非定常气动力计算[M]. 北京:北京航空航天大学出版社, 1991:100-115. Guan De. The calculation of the unsteady aerodynamic force[M]. Beijing:Beihang University Press, 1991:100-115. (in Chinese)
[16] Xie Changchuan, Yang Chao. Surface splines generalization and large deflection interpolation[J]. Journal of Aircraft, 2007, 44(3):1024-1026.
[17] 杨超. 飞行器气动弹性原理[M]. 北京:北京航空航天大学出版社, 2011:107-109. Yang Chao. The principle of aircraft aeroelasticity[M]. Beijing:Beihang University Press, 2011:107-109. (in Chinese)
[1] 李维勃, 王国砚, 钱志浩, 王昊. 基于径向基函数的冷却塔风场重构[J]. 工程力学, 2019, 36(5): 226-234.
[2] 胡伟成, 杨庆山, 张建. 湍流边界层中三维山丘地形风场大涡模拟[J]. 工程力学, 2019, 36(4): 72-79.
[3] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[4] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[5] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[6] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[7] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[8] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[9] 孙宝印, 古泉, 张沛洲, 欧进萍. 考虑P-Δ效应的框架结构弹塑性数值子结构分析[J]. 工程力学, 2018, 35(2): 153-159.
[10] 刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.
[11] 李焱, 唐友刚, 朱强, 曲晓奇, 刘利琴. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
[12] 王骑, 李郁林, 李志国, 廖海黎. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10): 10-16.
[13] 胡伟成, 杨庆山, 张建. 多国规范山地风速地形修正系数对比研究[J]. 工程力学, 2018, 35(10): 203-211.
[14] 朱世权, 李海元, 陈志华, 张辉. 弹性机翼静气动弹性数值研究[J]. 工程力学, 2017, 34(增刊): 326-332.
[15] 王晓江, 郑云飞, 刘庆宽, 刘小兵, 马文勇. 四心圆煤棚风荷载分布规律的试验研究[J]. 工程力学, 2017, 34(增刊): 59-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日