工程力学 ›› 2017, Vol. 34 ›› Issue (4): 32-41.doi: 10.6052/j.issn.1000-4750.2015.03.0180

• 土木工程学科 • 上一篇    下一篇

地震波斜入射下考虑场地非线性、地形效应和土结动力相互作用的大跨连续刚构桥地震响应分析

王笃国1,2, 赵成刚2,3   

  1. 1. 中国地震灾害防御中心, 北京 100029;
    2. 北京交通大学土建学院, 北京 100044;
    3. 桂林理工大学土木与建筑工程学院, 桂林 541004
  • 收稿日期:2015-03-14 修回日期:2017-01-13 出版日期:2017-04-25 发布日期:2017-04-25
  • 通讯作者: 王笃国(1979―),男,山东人,副研究员,博士,主要从事土-结构动力相互作用研究(E-mail:wangduguo@163.com). E-mail:wangduguo@163.com
  • 作者简介:赵成刚(1955―),男,黑龙江人,教授,博士,博导,主要从事土动力学和防灾减灾研究(E-mail:cgzhao@bjtu.edu.cn).
  • 基金资助:
    国家973项目(2015CB0578000);国家自然科学基金项目(51478135)

SEISMIC ANALYSIS OF LONG-SPAN CONTINUOUS RIGID FRAME BRIDGE CONSIDERING SITE NONLINEARITY, TOPOGRAPHY EFFECT AND SOIL-STRUCTURE DYNAMIC INTERACTION UNDER OBLIQUE INCIDENCE

WANG Du-guo1,2, ZHAO Cheng-gang2,3   

  1. 1. China Earthquake Disaster Prevention Center, Beijing 100029, China;
    2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    3. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China
  • Received:2015-03-14 Revised:2017-01-13 Online:2017-04-25 Published:2017-04-25

摘要: 基于多源叠加粘弹性人工边界和等效线性化理论,建立了SV波斜入射下考虑场地非线性、地形效应和土-结构动力相互作用的大跨结构动力响应分析计算方法。该文首先给出了SV波斜入射下非线性场地的自由场等效线性化求解方法,然后利用ANSYS有限元软件对一座5跨连续刚构桥和场地建立了有限元模型,计算了考虑场地非线性情况下不同入射角、不同地形和不同场地刚度工况下连续刚构桥的动力响应。计算结果表明:桥墩轴力随着入射角的增大而增大,剪力则随着入射角的增大而减小;局部地形不规则程度对桥梁结构内力放大效应有所不同,地形变化越剧烈,放大效应越明显;土体刚度对考虑土-结构动力相互作用的桥梁结构动力响应有较大影响,土体越软,土-结构动力相互作用效应越明显。

关键词: 地震响应分析, 斜入射, 场地非线性, 地形效应, 土-结构动力相互作用, 场地刚度

Abstract: Based on viscous-spring superposition artificial boundary and equivalent linear theory, a method for calculating the seismic response of long-span structures considering the nonlinear behavior of site, topography and soil-structure interaction effects under oblique incidence is established. Firstly, an equivalent linear method to obtain nonlinear site response under oblique SV wave incidence is introduced. Then, by using ANSYS software, a finite element model including a five-span continuous rigid frame bridge and soil profile is established. With the consideration of nonlinear soil behavior, a series of numerical simulation is performed with different topographies and site stiffness under different incident angles. The results show that the axial force increases and shear force decreases as the incidence angle goes up; the amplification of displacement response varies with different local irregular topographies. The amplification resulted from steep topography is larger than that from gentle topography. Site stiffness also has a great impact on the response of bridges and soft soils lead to much more pronounced responses than hard soils do.

Key words: seismic response analysis, oblique incidence, nonlinear site effect, topography effect, soil-structure dynamic interaction, site stiffness

中图分类号: 

  • TU435
[1] Restrepo J I, Cowan H A. The Eje Cafetero Earthquake, Colombia of January 25, 1999 [J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 2000, 33(1): 1―29.
[2] Rigo A, Chabalier J B D, Meyer B, Armijo R. The 1995 Kozani–Grevena (northern Greece) earthquake revisited: an improved faulting model from synthetic aperture radar interferometry [J]. Geophysical Journal International, 2004, 157(2): 727―736.
[3] Gazetas G, Kallou P V, Psarropoulos P N. Topography and soil effects in the MS 5.9 Parnitha (Athens) earthquake: the case of Adàmes [J]. Natural Hazards, 2002, 27(1): 133―169.
[4] Rogers A M, Katz L J, Bennett T J. Topographic effects on ground motion for incident P waves: A model study [J]. Bulletin of the Seismological Society of America, 1974, 64(2): 437―456.
[5] Griffiths D W, Bollinger G A. The effect of Appalachian Mountain topography on seismic waves [J]. Bulletin of the Seismological Society of America, 1979, 69(4): 1081―1105.
[6] Tucker B E, King J L, Hatzfeld D, et al. Observations of hard-rock site effects [J]. Bulletin of the Seismological Society of America, 1984, 74(1): 121―136.
[7] Umeda Y, Kuroiso A, Ito K, et al. High accelerations produced by the Western Nagano Prefecture, Japan, earthquake of 1984 [J]. Tectonophysics, 1987, 141(4): 335―343.
[8] Bi K, Hao H. Influence of irregular topography and random soil properties on coherency loss of spatial seismic ground motions [J]. Earthquake Engineering &Structural Dynamics, 2011, 40(9): 1045―1061.
[9] Khodakarami M I, Khaji N. Wave propagation in semi-infinite media with topographical irregularities using Decoupled Equations Method [J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 102―112.
[10] Khanbabazadeh H, Iyisan R. A numerical study on the 2D behavior of clayey basins [J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 31―41.
[11] Rizzitano S, Cascone E, Biondi G. Coupling of topographic and stratigraphic effects on seismic response of slopes through 2D linear and equivalent linear analyses [J]. Soil Dynamics and Earthquake Engineering, 2014, 67: 66―84.
[12] Chopra A K, Gutierrez J A. Earthquake response analysis of multistorey buildings including foundation interaction [J]. Earthquake Engineering & Structural Dynamics, 1974, 3(1): 65―77.
[13] Bielak J. Modal analysis for building-soil interaction [J]. Journal of the Engineering Mechanics Division, 1976, 102(5): 771―786.
[14] Iguchi M, Luco J E. Dynamic response of flexible rectangular foundations on an elastic half‐space [J]. Earthquake Engineering & Structural Dynamics, 1981, 9(3): 239―249.
[15] 闫晓宇, 李忠献, 韩强, 杜修力. 考虑土-结构相互作用的大跨度连续刚构桥振动台阵试验研究[J]. 工程力学, 2014, 31(2): 58―65. Yan Xiaoyu, Li Zhongxian, Han Qiang, Du Xiuli. Shaking tables test on a long-span rigid-framed bridge considering soil-structure interaction [J]. Engineering Mechanics, 2014, 31(2): 58―65. (in Chinese)
[16] 罗致, 李建中, 严搏. 山区高墩连续刚构桥墩梁相对位移控制研究[J]. 工程力学, 2016, 33(1): 148―156. Luo Zhi, Li Jianzhong, Yan Bo. Research on the control of displacement between pier and girder of continuous rigid frame bridge with high piers in mountain area [J]. Engineering Mechanics, 2016, 33(1): 148―156. (in Chinese)
[17] Stamati O, Klimis N, Lazaridis T. Evidence of complex site effects and soil non-linearity numerically estimated by 2D vs 1D seismic response analyses in the city of Xanthi [J]. Soil Dynamics and Earthquake Engineering, 2016, 87: 101―115.
[18] 廖振鹏. 地震小区划——理论与实践[M]. 北京: 地震出版社, 1989: 12―18, 122―133. Liao Zhenpeng. Seismic microzonation—theory and practice [M]. Beijing: Seismological Press, 1989: 12―18, 122―133. (in Chinese)
[19] 王蕾, 赵成刚, 王智峰. 考虑地形影响和多点激励的大跨高墩桥地震响应分析[J].土木工程学报, 2006, 39(1): 50―53. Wang Lei, Zhao Chenggang, Wang Zhifeng. Seismic response analysis of continuous rigid-framed bridge with high piers considering topographic effects and multi- support excitations [J]. China Civil Engineering Journal, 2006, 39(1): 50―53. (in Chinese)
[20] 王蕾, 赵成刚, 屈铁军. SV波入射下地形条件对大跨钢构桥地震响应的影响[J]. 地震学报, 2008, 30(3): 307―314. Wang Lei, Zhao Chenggang, Qu Tiejun. Seismic response of long-span rigid-framed bridge to incident SV wave with topographic effect being considered [J]. Acta Seismologica Sinica, 2008, 30(3): 307―314. (in Chinese)
[21] 郜新军, 赵成刚, 刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力相应分析[J]. 工程力学, 2011, 28(11): 237―243. Gao Xinjun, Zhao Chenggang, Liu Qin. Seismic response analysis of multi-span viaduct considering topographic effect and soil-structure dynamic interaction based on inclined wave [J]. Engineering Mechanics, 2011, 28(11): 237―243. (in Chinese)
[22] 郜新军, 赵成刚, 张延. 多源散射叠加粘弹性人工边界探究及在桥梁工程中的应用[J]. 土木工程学报, 2010, 43(11): 131―138. Gao Xinjun, Zhao Chenggang, Zhang Yan. A study of viscous-spring superposition artificial boundary for multi-sources scattering problem and its application in bridge engineering [J]. China Civil Engineering Journal, 2010, 43(11): 131―138. (in Chinese)
[23] Schnabel P B, Lysmer J, Seed H B. Shake: a computer program for earthquake response analysis of horizontally layered sites [D]. Berkeley: University of California, 1972.
[24] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10): 52―61. Zhang Ji, Liang Jianwen, Ba Zhenning. Equivalent linear analysis of seismic response of horizontally layered fluid-saturated poroelastic half-space [J]. Engineering Mechanics, 2016, 33(10): 52―61. (in Chinese)
[25] 王笃国, 赵成刚. 地震波斜入射时二维成层介质自由场求解的等效线性化方法[J]. 岩土工程学报, 2016, 38(3): 554―561. Wang Duguo, Zhao Chenggang. Two dimensional equivalent linear seismic analysis of free field in a layered half space due to oblique incidence [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 554―561. (in Chinese)
[26] Wang Zihui, Zhao Chenggang, Dong Liang. An approximate spring-dashpot artificial boundary for transient wave analysis of fluid-saturated porous media [J]. Computers and Geotechnics, 2009, 36(1/2): 199―210.
[27] Takaaki K, Mejia L H, Seed H B. TLUSH: A computer program for the three-dimension dynamic analysis of earth dams [R]. California: College of Engineering University of California Berkeley, SEP., 1981.
[28] 王振宇, 刘晶波. 成层地基非线性波动问题人工边界与波动输入研究[J]. 岩石力学与工程学报, 2004, 23(7): 1169―1173. Wang Zhenyu, Liu Jingbo. Study on wave motion input and artificial boundary for problem of nonlinear wave motion in layered soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 1169―1173. (in Chinese)
[29] Huang Jinqi, Du Xiuli, Jin Liu, Zhao Mi. Impact of incident angles of P waves on the dynamic responses of long lined tunnels [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(15): 2435―2454.
[30] 张朝晖. ANSYS 11.0结构分析工程应用实例解析[M]. 北京: 机械工业出版社, 2008: 177―181. Zhang Zhaohui. Structure Analysis of Engineering Application for ANSYS 11.0 [M]. Beijing: China Machine Press, 2008: 177―181. (in Chinese)
[31] 殷平. 动轴力作用下桥墩抗震性能及计算模型研究[D]. 杭州: 浙江大学, 2013. Yin Ping. Research on pier's seismic performance and numerical model subjected to dynamic axial forces [D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[32] 黄景琦, 杜修力, 田志敏, 金浏, 赵密. 斜入射SV波对地铁车站地震响应的影响[J]. 工程力学, 2014, 31(9): 81―88, 103. Huang Jingqi, Du Xiuli, Tian Zhimin, Jin Liu, Zhao Mi. Effect of the oblique incidence of seismic SV waves on the seismic response of subway station structure [J]. Engineering Mechanics, 2014, 31(9): 81―88, 103. (in Chinese)
[33] 张俊胜. 土-结构动力相互作用的研究方法和发展趋势[J]. 国外建材科技, 2005, 26(1): 52―54. Zhang Junsheng. Research method and trends of development on soil and structure dynamic interaction [J]. Science and Technology of Overseas Building Materials, 2005, 26(1): 52―54. (in Chinese)
[1] 曾翔, 刘诗璇, 许镇, 陆新征. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊): 113-118.
[2] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10): 52-61.
[3] 黄景琦,杜修力,田志敏,金浏,赵密. 斜入射SV波对地铁车站地震响应的影响[J]. 工程力学, 2014, 31(9): 81-88,103.
[4] 迟福东, 王进廷, 金峰, 徐艳杰. 土结构动力相互作用的实时耦联动力试验的时滞稳定性[J]. 工程力学, 2012, 29(8): 1-7.
[5] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237-243.
[6] 徐 静;李宏男;李 钢;黄连壮. 考虑桩-土-结构动力相互作用的输电塔地震反应分析[J]. 工程力学, 2009, 26(9): 24-029.
[7] 唐 敢;陈少林;王法武;丁海平;. 空间结构-地基动力相互作用的三维时域数值分析方法[J]. 工程力学, 2009, 26(8): 143-149,.
[8] 刘晶波;王 艳. 成层介质中平面内自由波场的一维化时域算法[J]. 工程力学, 2007, 24(7): 0-022.
[9] 尚守平;朱志辉;吴方伯. 土-箱基-框架结构动力相互作用大比例模型野外试验研究[J]. 工程力学, 2006, 23(10): 118-124.
[10] 刘晶波;李彬. Rayleigh波作用下地下结构的动力反应分析[J]. 工程力学, 2006, 23(10): 132-1351.
[11] 李建波;陈健云;林皋. 无限地基-结构动力相互作用分析的分区递归时域算法研究[J]. 工程力学, 2005, 22(3): 88-96.
[12] 刘晶波;王振宇;张克峰;裴欲晓. 考虑土-结构相互作用大型动力机器基础三维有限元分析[J]. 工程力学, 2002, 19(3): 34-38,4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日