工程力学 ›› 2016, Vol. 33 ›› Issue (9): 195-203.doi: 10.6052/j.issn.1000-4750.2015.02.0133

• 土木工程学科 • 上一篇    下一篇

龙卷风动态冲击高层建筑风荷载数值模拟

王新1, 黄生洪1, 李秋胜2   

  1. 1. 中国科学技术大学近代力学系, 安徽, 合肥 230026;
    2. 香港城市大学建筑系, 香港, 九龙
  • 收稿日期:2015-02-12 修回日期:2015-05-08 出版日期:2016-09-25 发布日期:2016-09-25
  • 通讯作者: 黄生洪(1974-),男,四川简阳人,副教授,博士,主要从事风工程研究(E-mail:hshnpu@ustc.edu.cn). E-mail:hshnpu@ustc.edu.cn
  • 作者简介:王新(1987-),男,安徽宿州人,硕士生,主要从事风工程研究(E-mail:axwqx@mail.ustc.edu.cn);李秋胜(1962-),男,湖南永州人,教授,博士,主要从事风工程研究(E-mail:bcqsli@cityu.edu.hk).
  • 基金资助:

    国家自然科学基金面上项目(51378484);结构风工程中高雷诺数湍流数值模拟新方法研究项目(51378484)

NUMERICAL SIMULATION OF DYNAMIC IMPACTING WIND LOADS ON HIGH-RISE BUILDING BY TORNADO

WANG Xin1, HUANG Sheng-hong1, LI Qiu-sheng2   

  1. 1. Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China;
    2. Department of Building and Construction, City University of Hongkong, Jiulong, HongKong, China
  • Received:2015-02-12 Revised:2015-05-08 Online:2016-09-25 Published:2016-09-25
  • Contact: 10.6052/j.issn.1000-4750.2015.02.0133 E-mail:hshnpu@ustc.edu.cn

摘要:

龙卷风具有较强的破坏力,是抗风减灾工程重要的防范对象之一。近年来,随着地球环境的恶化,龙卷风袭击大型城市的灾害时有发生,针对高层建筑的研究开始受到重视。目前对龙卷风动态冲击高层结构的研究还较少。因此,该文建立了动态运动的龙卷风风场模型,模拟了龙卷风动态冲击高层建筑结构的非定常过程,初步分析了龙卷风冲击高层建筑结构的风荷载特征及规律。结果表明:1) 该文采用的龙卷风模型及计算方法能可靠地模拟龙卷风的基本特征和荷载规律。2) 龙卷风动态冲击高层建筑,其荷载效应与建筑尺度有关。建筑尺度较小时,冲击荷载呈双峰特征,冲击效应和时变效应相对较小。相反,冲击荷载呈多峰特征,时变性强,冲击效应明显。3) 龙卷风在冲击较大尺度建筑时,主涡会发生破裂,形成多个漩涡。多漩涡及建筑尾涡相互作用和耦合是导致更大冲击效应的重要力学机制。这种力学现象在国内外龙卷风研究中尚未发现类似报道。

关键词: 龙卷风, 高层建筑, 风荷载, 冲击效应, 数值模拟

Abstract:

Tornado has significant potential of severe damage to structures and has been one of the important research topics in wind resistance&disaster prevention engineering. With the changing of global environment in recent years, large cities are attacked by tornados occasionally. The studies on tornado's effects on high-rise buildings receive concerns gradually. Presently, few investigations focus on dynamic behavior of moving tornado and the impacting wind loads on high rise buildings. The wind model of moving tornado is established and the unsteady process of a moving tornado impacting against high rise buildings is numerically simulated, then the wind flow characteristics, as well as the dynamic wind loads of tornado striking against large civil structures, are analyzed. The results show that 1) The numerical tornado models and methods adopted herein are reliable to simulate the tornado flow field, and the simulation results are in good agreement with those of experiments; 2) The wind loads of tornado striking on high-rise buildings is observed to be related with the size of target buildings. For small size case, the loads are characterized by dual peak profiles, and impacting effects and unsteadiness are relatively small, while for large size case, the loads are characterized by multi-peak profiles with strong unsteadiness and large impacting effects. 3) In the process of tornado striking on large size high-rise buildings, the main vortex is observed to be broken into several vortices, and then a complicated interaction and coupling among vortices, as well as a wake flow of building, is observed. No similar mechanical phenomenon has been reported in existing literatures of tornado investigation.

Key words: tornado, high-rise building, wind loads, impacting effect, numerical simulation

中图分类号: 

  • TU312.1

[1] Alexander C R, Wurman J. The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes[J]. Monthly Weather Review, 2005, 133(1): 72-97.
[2] Wurman J, Alexander C R. The 30 May 1998 Spencer, South Dakota,storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes[J]. Monthly Weather Review, 2005, 133(1): 97-119.
[3] Kosiba Karen A, Robinmson Paul, Chan P W, Wurman Joshua. Wind field of a nonmesocyclone anticyclonic tornado crossing the Hong Kong international airport[J]. Advances in Meteorology Volume, 2014, 14(1): 1-7.
[4] Chang C C. Tornado wind effects on buildings and structures with laboratory simulation[C]. Tokyo, Japan: Third International Conference on Wind Effects on Buildings and Structures, 1971: 231-240.
[5] Ward N B. The exploration of certain features of Tornado dynamics using a laboratory model[J]. Journal of Atmospheric Sciences, 1972, 29: 1194-1204.
[6] Sarkar P, Haan F, Gallus Jr W, et al. Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data[R]. Tsukuba, Ibaraki, Japan: Technical Memorandum of Public Works Research Institute, 2005: 197-211.
[7] Partha P Sarkar, Fred L Haan, Vasanth Balaramudu, Anindya Sengupta. Laboratory simulation of tornado and microburst to assess wind loads on buildings[C]. St. Louis, Missouri, United States: ASCE Structures Congress, 2006: 1-10.
[8] Haan Jr F L, Vasanth Kumar Balaramudu, Sarkar P P. Tornado-induced wind loads on a low-rise building[J]. Journal of Structural Engineering, 2010, 136(1): 106-116.
[9] 陈艾荣, 刘志文, 周志勇. 大跨径斜拉桥在龙卷风作用下的响应分析[J]. 同济大学学报(自然科学版), 2005, 33(5): 569-574. Cheng Airong, Liu Zhiwen, Zhou Zhiyong. Tornado effects on large span cable-stayed bridges[J]. Journal of Tongji University (Natural Science), 2005, 33(5): 569-574. (in Chinese)
[10] 甘文举, 何益斌. Rankine涡平移模型下低层房屋龙卷风荷载的分析[J]. 四川建筑科学研究, 2009, 35(1): 84-86. Gan Wenju, He Yibin. Analysis of tornado forces on low rise buildings according to the model of transmitting Rankine vortex[J]. Sichuan Building Science, 2009, 35(1): 84-86. (in Chinese)
[11] 白俊峰, 鞠彦忠, 曾聪. 龙卷风作用下空间析架的受力分析[J]. 东北电力大学学报, 2011, 31(5/6): 46-51. Bai Junfeng, JuYanzhong, Zeng Cong. Force analysis of space truss subjected to tornado loads[J]. Journal of Northeast Dianli University, 2011, 31(5/6): 46-51. (in Chinese)
[12] 汤卓, 吕令毅. 核电站常规岛主厂房龙卷风荷载的CFD模拟[J]. 东南大学学报(自然科学版), 2012, 42(6): 1164-1168. Tang Zhuo, Lü Lingyi. CFD simulation of tornado induced wind loads on main powerhouse of conventional island in nuclear power plant[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(6): 1164-1168. (in Chinese)
[13] 汤卓, 张源, 吕令毅. 龙卷风风场模型及风荷载研究[J]. 建筑结构学报, 2012, 33(3): 14-17. Tang Zhuo, Zhang Yuan, Lü Lingyi. Study on tornado model and tornado-induced wind loads[J]. Journal of Buildings Structures, 2012, 33(3): 14-17. (in Chinese)
[14] El Damatty A, Hamada, A. Behavior of guyed transmission line structures under Tornado wind loads-case studies[C]. Columbus, Ohio, United States: Electrical Transmission and Substation Structures, 2012: 193-204.
[15] Maruyama T. A numerically generated tornado-like vortex by large eddy simulation[C]. Taipei, Taiwan: The Seventh Asia-Pacific Conference on wind Engineering, 2009.
[16] Yang Zifeng, Partha Sarkar, Hu Hui. An experimental study of a high-rise building model in tornado-likewinds[J]. Journal of Fluids and Structures, 2011, 27(4): 471-486.
[17] SabareeshGeethaRajasekharan, Masahiro Matsui, Yukio Tamura. Characteristics of internal pressures and net local roof wind forces on a building exposed to a tornado-like vortex[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 112(1): 52-57.
[18] Xu Feng, Xiao Yiqing, Li Bo, Ou Jinping. CFD numerical simulation of tornado wind field characteristics[J]. Acta Aerodynamic Sinica, 2013, 31(3): 350-370.
[19] Zhang Yan, Partha Sarkar, Hu Hui. An experimental study on wind loads acting on a high-rise building model induced by microburst-like winds[J]. Journal of Fluids and Structures, 2014, 50(1): 547-564.
[20] Takeshi Ishihara, Liu Zhenqing. Numerical study on dynamics of a tornado-like vortex with touching down by using the LES turbulence model[J]. Wind and Structures, 2014, 19(1): 89-111.
[21] 宋拓, 汤卓, 王兆勇, 吕令毅. 基于谱随机有限元法的龙卷风作用下核电常规岛可靠度分析[J]. 工程力学, 2014, 31(11): 146-153. Song Tuo, Tang Zhuo, Wang Zhaoyong, Lü Lingyi. Reliability analysis of nuclear power plant main house under the effect of tornado load based on SSFEM[J]. Engineering Mechanics, 2014, 31(11): 146-153. (in Chinese)
[22] Wen Y K. Dynamic tornadic wind loads on tall buildings[J]. Journal of the Structure Division, 1975, 101(1): 169-185.

[1] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[2] 翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364.
[3] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[4] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[5] 吴志军, 张鹏林, 刘泉声, 李万峰, 江维中. 基于零厚度粘聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(8): 79-90,110.
[6] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
[7] 石础, 罗宇, 胡志强. 考虑失效的非线性Burgers'海冰模型及其数值应用[J]. 工程力学, 2018, 35(7): 249-256.
[8] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
[9] 潘晓军, 张燕平, 陈曦, 高伟, 樊剑. 水平基底上薄膜流体的数学模型及其数值模拟[J]. 工程力学, 2018, 35(6): 24-32,41.
[10] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[11] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[12] 田甜, 雷洋, 齐法琳, 黎国清. 不同时速列车振动荷载下衬砌拱圈振动响应传递规律[J]. 工程力学, 2018, 35(5): 143-151.
[13] 韩艳, 李凯, 陈浩, 蔡春声, 董国朝. 桥面典型车辆气动特性及车辆间挡风效应的数值模拟研究[J]. 工程力学, 2018, 35(4): 124-134,185.
[14] 樊鹏玄, 陈务军, 赵兵. 盘绕式伸展臂收纳过程理论分析与数值模拟[J]. 工程力学, 2018, 35(3): 249-256.
[15] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日