工程力学 ›› 2016, Vol. 33 ›› Issue (8): 221-230.doi: 10.6052/j.issn.1000-4750.2014.11.0956

• 其他工程学科 • 上一篇    下一篇

几何非线性假设下温度大范围变化瞬态热力耦合问题研究

谷良贤, 王一凡   

  1. 西北工业大学航天飞行动力学技术重点实验室, 陕西, 西安 710072
  • 收稿日期:2014-11-14 修回日期:2016-06-01 出版日期:2016-08-25 发布日期:2016-08-25
  • 通讯作者: 王一凡(1989-),男,北京人,博士生,从事一体化热防护结构研究(E-mail:2293352167@qq.com). E-mail:2293352167@qq.com
  • 作者简介:谷良贤(1957-),女,河南人,教授,博士,博导,从事飞行器总体设计及多学科优化设计研究(E-mail:gulx@nwpu.edu.cn).

THE TRANSIENT RESPONSE OF THERMO-MECHANICAL COUPLING WITH WIDE CHANGE IN TEMPERATURE BASED ON THE HYPOTHESIS OF GEOMETRY NONLINEARITY

GU Liang-xian, WANG Yi-fan   

  1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • Received:2014-11-14 Revised:2016-06-01 Online:2016-08-25 Published:2016-08-25
  • Contact: 10.6052/j.issn.1000-4750.2014.11.0956 E-mail:2293352167@qq.com

摘要:

传统的基于几何非线性假设的瞬态热力耦合计算方法由于忽略了几何非线性对耦合项的影响,在温度随时间剧烈变化的情况下结构传热与变形之间存在的耦合关系不能被真实的反映。针对上述问题,采用Galerkin和Newmark算法建立了一种能够在几何非线性假设下精确反映温度剧烈变化情况下结构传热与变形间耦合效应的瞬态热力耦合有限元方法。通过对各向正交异性材料薄板在热环境下的动力学问题的求解验证了该方法的准确性,并基于该方法对某型高超声速飞行器热防护系统的蜂窝结构进行了瞬态热力耦合计算。结果表明:热力耦合项使温度变化产生很小的波动,导致温度变化率发生震荡,其振动幅值与耦合项相关;热力耦合项对结构振动起到衰减作用,使结构形变速度趋于衰减,其衰减程度与结构温度成正比;几何非线性假设对增大结构温度变化率振幅作用显著,并且能够增大结构振动速度,影响热结构变形大小。

关键词: 几何非线性, 热力耦合, 瞬态响应, 有限元方法, 结构动力学

Abstract:

Ignoring the effect of geometry nonlinear on coupling, the traditional methods of calculating transient thermo-mechanical coupling under the hypothesis of geometry nonlinear cannot reflect the heat transfer and structural deformation coupling accurately within a wide extension of temperature. Hence, a transient finite element method considering geometry nonlinear is established to solve the problem of thermo-mechanical coupling based on Galerkin and Newmark algorithm. Thereafter, the method is validated by calculating the dynamic behaviors of an orthotropic thin plate under thermal environments, and it is further applied in solving the thermo-mechanical coupling problem of a honeycomb panel of the thermal protection system on a hypersonic flight vehicle. The results indicate that the coupling term with small effect on temperature can cause vibration of temperature, speed up the convergence of structural deformation and alleviate structural vibration with the damping proportional to temperature. In addition, the hypothesis of geometry nonlinear can substantially increase the amplitude of the change of temperature, as well as the vibration velocity, and affects the structural deformation.

Key words: geometry nonlinear, thermo-mechanical coupling, transient response, finite element method, structural dynamics

中图分类号: 

  • O343.6

[1] Faterni J. Coupled Thermal-structural analysis of the EXPERT re-entry vehicle[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, April 11-14, 2011:1-10.
[2] Brent A M. Modeling and analysis of shock impringments on thermo-mechanically compliant surface panels[C]//53rd AIAA Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April 23-26, 2012:1-31.
[3] 李凯伦, 张家忠. 功能梯度材料薄板的热气动弹性数值分析方法及特性研究[J]. 宇航学报, 2013, 34(9):1177-1186. Li Kailun, Zhang Jiazhong. Numerical analysis method and aerothermoelastic behaviors of temperaturedependent functional graded panels[J]. Journal of Astronautics, 2013, 34(9):1177-1186. (in Chinese)
[4] Odabas O R. On the coupled thermomechanical analysis of hypersonic flight vehicle structures[C]//AIAA Fourth International Aerospace Planes Conference, Orlando, FL, December 1-4, 1992:1-12.
[5] Odabas O R. The limit of the uncoupled theory in thermomechanical design of thermal structures[C]//34th AIAA Structures, Structural Dynamics and Materials Conference, La Jolla, CA, April. 19-22, 1993:2327-2336.
[6] Vaziri H H, Theory and application of a fully coupled thermo-hydro-mechanical finit element model[J]. Computer & Structures, 1996, 61(1):131-146.
[7] Choi J H. Lee I. Finite element analysis of transient thermoelastic behaviors in disk brakes[J]. Wear, 2004, 257(2):47-58.
[8] Al-Huniti NaserS, Al-Nimr M A, Meqdad M M. Thermally induced vibration in a thin plate under the wave heat conduction model[J]. Journal of Thermal Stresses, 2003, 26(10):943-962.
[9] Serra E, Bonaldi M. A finite element formulation for thermoelastic damping analysis[J]. International Journal for Numerical Methods in Engineering, 2009, 78(6):671-691.
[10] 马玉娥. 可重复使用运载器热防护系统热/力耦合数值计算研究[D]. 西安:西北工业大学, 2005. Ma Yu'e. Study of thermo-mechanical coupled computation for thermal protection system of reusable launch vehicle[D]. Xi'an:Northwestern Polytechnical University, 2005. (in Chinese)
[11] 马玉娥, 孙秦. 动态热力耦合精细积分解法研究[J]. 机械强度, 2007, 29(3):483-486. Ma Yu'e, Sun Qin. Precise time-integration method for dynamic response of thermo-mechanical coupled problem[J]. Journal of Mechanical Strength, 2007, 29(3):483-486. (in Chinese)
[12] Li W, Xiang Z, Chen L, et al. Thermal flutter analysis of large-scale space structures based on finite element method[J]. International Journal for Numerical Methods in Engineering, 2007, 69(5):887-907.
[13] 何天虎, 关明智. 有限元法求解广义热弹耦合一维热冲击问题[J]. 工程力学, 2010, 27(6):35-39. He Tianhu, Guan Mingzhi. Finite element method to a generalized one-dimensional thermo-elastic coupled problem subject to a thermal shock[J]. Engineering Mechanics, 2010, 27(6):35-39. (in Chinese)
[14] 何天虎, 关明智. 考虑热松弛的热弹耦合二维问题的有限元法[J]. 工程力学, 2011, 28(12):1-6. He Tianhu, Guan Mingzhi. Finite element method for a two-dimensional thermoelastic coupling problem with thermal relaxation[J]. Engineering Mechanics, 2011, 28(12):1-6. (in Chinese)
[15] 王一凡, 谷良贤, 龚春林. 考虑温度大范围变化的瞬态热固耦合方法研究[J]. 宇航学报, 2015, 36(1):117-124. Wang Yifan, Gu Liangxian, Gong Chunlin. Thermomechanical coupled transient response approach considering wide change in temperature[J]. Journal of Astronautics, 2015, 36(1):117-124. (in Chinese)
[16] Ribeiro P, Manoach E. The effect of temperature on the large amplitude vibrations of curved beams[J]. Journal of Sound and Vibration, 2005, 285(4/5):1093-1107.
[17] Amabili M, Carra S. Thermal effects on geometrically nonlinear vibrations of rectangular plates with fixed edges[J]. Journal of Sound and Vibration, 2009, 321(3):936-954.
[18] Alijani F, Bakhtiari-Nejad F, Amabili M. Nonlinear vibrations of FGM rectangular plates in thermal environments[J]. Nonlinear Dyn, 2011, 66(3):251-270.
[19] Allahverdizadeh A, Naei M H, Nikkhah-Bahrami M. Vibration amplitude and thermal effects on the nonlinear behavior of thin circular functionally graded plates[J]. International Journal of Mechanical Sciences, 2008, 50(3):445-454.
[20] Huang X L, Shen H S. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments[J]. Journal of Sound and Vibration, 2006, 289(1/2):25-53.
[21] Cho H K. Optimization of dynamic behaviors of an orthotropic composite shell subjected to hygrothermal enviornment[J]. Finite Elements in Analysis and Design, 2009, 45(11):852-860.
[22] 范丽佳, 段进, 向志海, 等. 大型柔性空间结构热-动力学耦合系统的非线性有限元分析[J]. 宇航学报, 2009, 30(1):299-304. Fan Lijia, Duan Jin, Xiang Zhihai, et al. The Thermal-dynamic coupling analysis of large flexible space structures by finite element method considering geometric nonlinearity[J]. Journal of Astronautics, 2009, 30(1):299-304. (in Chinese)
[23] 蔡国飊. 高超声速飞行器技术[M]. 北京:科学出版社, 2011:225-272. Cai Guobiao. Technology of hypersonic vehicle[M]. Beijing:Science Press, 2011:225-272. (in Chinese)
[24] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2004:441-520. Wang Xucheng. Finite element method[M]. Beijing:Tsinghua University Press, 2004:441-520. (in Chinese)
[25] Myers D E, Martin C J, Blosser M L. Parametric weight comparision of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems[R]. Washington DC:National Aeronautics and Space Administration, 2000.
[26] 梁森, 陈花玲, 陈天宁, 梁天锡. 蜂窝夹芯结构面内等效弹性参数的分析研究[J]. 航空材料学报, 2004, 24(3):26-31. Liang Sen, Chen Hualing, Chen Tianning, Liang Tianxi. Analytical study of the equivalent elastic parameters for a honeycomb core[J]. Journal of Aeronautical Materials, 2004, 24(3):26-31. (in Chinese)
[27] Fatemi J, Lemmen M H J. Effective Thermal/Mechanical Properties of Honeycomb Core Panels for Hot Structure Applications[J]. Journal of Spacecraft and Rockets, 2009, 46(3):514-525.

[1] 解江, 张雪晗, 苏璇, 牟浩蕾, 周建, 冯振宇, 蓝元沛. 铺层顺序对复合材料薄壁圆管轴向压溃吸能特性的影响研究[J]. 工程力学, 2018, 35(6): 231-239.
[2] 于晓东, 刘超, 左旭, 张艳芹. 静压支承摩擦副变形流热力耦合求解与实验[J]. 工程力学, 2018, 35(5): 231-238.
[3] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[4] 孙宝印, 古泉, 张沛洲, 欧进萍. 考虑P-Δ效应的框架结构弹塑性数值子结构分析[J]. 工程力学, 2018, 35(2): 153-159.
[5] 刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.
[6] 李焱, 唐友刚, 朱强, 曲晓奇, 刘利琴. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
[7] 狄勤丰, 宋海涛, 陈锋, 王文昌, 张鹤, 靳泽中. 复杂载荷下油井管接头数值仿真平台的研发与应用[J]. 工程力学, 2017, 34(增刊): 295-299.
[8] 齐念, 叶继红. 弹性DEM方法在杆系结构中的应用研究[J]. 工程力学, 2017, 34(7): 11-20.
[9] 王琳, 李玉星, 刘昶, 胡其会, 王娅婷, 王权. 严重段塞流引起的海洋立管振动响应[J]. 工程力学, 2017, 34(6): 236-245.
[10] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.
[11] 段进涛, 史旦达, 汪金辉, 焦宇, 何佩珊. 火灾环境下钢结构响应行为的FDS-ABAQUS热力耦合方法研究[J]. 工程力学, 2017, 34(2): 197-206.
[12] 朱世权, 李海元, 陈志华, 黄振贵, 张焕好. 基于双向流固耦合的机载导弹分离动力学研究[J]. 工程力学, 2017, 34(10): 217-228,248.
[13] 王文杰, 张磊, 林峰. 预应力钢丝缠绕“正交预紧机架”刚度比计算方法研究[J]. 工程力学, 2016, 33(3): 214-221,247.
[14] 文颖, 孙明文, 李特, 曾庆元. 杆系结构非线性后屈曲分析的增量割线刚度法[J]. 工程力学, 2016, 33(12): 12-20.
[15] 王少钦, 马骎, 夏禾, 郭薇薇. 风-列车-大跨度悬索桥系统非线性耦合振动分析[J]. 工程力学, 2016, 33(12): 150-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日