工程力学 ›› 2016, Vol. 33 ›› Issue (8): 211-220.doi: 10.6052/j.issn.1000-4750.2014.09.0755

• 其他工程学科 • 上一篇    下一篇

梯度泡沫金属的冲击吸能特性

张健1,2, 赵桂平1, 卢天健1   

  1. 1. 西安交通大学航天航空学院机械结构强度与振动国家重点实验室, 西安 710049;
    2. 西安理工大学土木建筑工程学院西北旱区生态水利工程国家重点实验室培育基地, 西安 710048
  • 收稿日期:2014-09-05 修回日期:2016-06-20 出版日期:2016-08-25 发布日期:2016-08-25
  • 通讯作者: 赵桂平(1958-),女,福建人,教授,博士,博导,从事复合材料及结构的冲击动力学问题研究(E-mail:zhaogp@mail.xjtu.edu.cn). E-mail:zhaogp@mail.xjtu.edu.cn
  • 作者简介:张健(1981-),男,陕西人,讲师,博士,从事多孔金属及其夹心结构的力学性能研究(E-mail:zj@xaut.edu.cn);卢天健(1964-),男,福建人,教授,博士,博导,从事生物热力学、疼痛、康复科学与工程、固体力学、传热学等方面的研究(E-mail:tjlu@mail.xjtu.edu.cn).
  • 基金资助:

    国家自然科学基金项目(11372237);国家重大基础研究计划项目(2011CB610305);西安理工大学博士科研启动金项目(118-211401)

ENERGY ABSORPTION BEHAVIOUR OF DENSITY-GRADED METALLIC FOAM UNDER IMPACT LOADING

ZHANG Jian1,2, ZHAO Gui-ping1, LU Tian-jian1   

  1. 1. State Key Laboratory for Strength and Vibration of Mechanical Structure, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China;
    2. State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China
  • Received:2014-09-05 Revised:2016-06-20 Online:2016-08-25 Published:2016-08-25
  • Contact: 10.6052/j.issn.1000-4750.2014.09.0755 E-mail:zhaogp@mail.xjtu.edu.cn

摘要:

基于闭孔泡沫铝的显微CT扫描信息,考虑胞孔的不规则形貌及胞孔分布的不均匀性,以及胞孔尺寸和壁厚沿泡沫高度的梯度分布,建立了梯度泡沫金属材料的二维细观有限元模型,分析了梯度泡沫金属材料在动态压缩过程中的变形、塑性波的传播和能量变化特征。对于平均相对密度0.3、平均梯度系数0.4的梯度泡沫铝,低速(10 m/s)加载时,梯度泡沫金属在变形的整个过程中吸收的总能量均低于均匀泡沫金属;高速加载时,梯度泡沫金属沿负梯度方向压缩的早期吸能比均匀泡沫金属有优势,而且速度越高,优势越明显。

关键词: 闭孔泡沫铝, 动态压缩, 塑性波, 细观有限元模型, 梯度多孔材料

Abstract:

Based on tomographic images of closed-cell aluminum foams, a two-dimensional mesoscopic finite element (FE) model is created for idealized density-graded aluminum foams, with cell shape and geometric distribution accounted for. Numerical simulations are carried out to investigate the compressive deformation mechanisms, shock wave propagation and energy absorption capacity of the model density-graded foam under impact loading, with its average relative density and gradient coefficient fixed at 0.3 and 0.4, respectively. At relatively low impact velocity (10 m/s), the density-graded foam absorbs smaller total energy than its homogeneous counterpart. At sufficiently high impact velocities, however, the density-graded foam compressed along the negative gradient direction exhibits superior energy-absorbing performance. Such superiority is strengthened with increasing impact velocity.

Key words: aluminum foam, dynamic compression, plastic wave, mesoscopic finite element model, density-graded porous materials

中图分类号: 

  • O347

[1] 杨保军, 奚正平, 汤慧萍, 汪强兵. 梯度多孔金属材料制备及应用的研究进展[J]. 粉末冶金工业, 2008, 18:28-32. Yang Baojun, Xi Zhengping, Tang Huiping, Wang Qiangbing. Research progress in preparation and application of gradient-porous metal[J]. Powder Metallurgy Industry, 2008, 18(2):28-32. (in Chinese)
[2] 汤慧萍, 朱纪磊, 葛渊, 等. 纤维多孔材料梯度结构的吸声性能研究[J]. 稀有金属材料与工程, 2007, 36(12):2220-2223. Tang Huiping, Zhu Jilei, Ge Yuan, et al. Sound absorbing characteristics of fibrous porous materials gradient structure[J]. Rare Metal Materials and Engineering, 2007, 36(12):2220-2223. (in Chinese)
[3] 黄可, 何思渊, 何德坪. 梯度孔径多孔铝合金的压缩及吸能性能[J]. 机械工程材料, 2010, 34(1):77-83. Huang Ke, He Siyuan, He Deping. Compression and energy absorption properties of gradual porous aluminum alloy[J]. Materials for Mechanical Engineering, 2010, 34(1):77-83. (in Chinese)
[4] Brothers A H, Dunand D C. Mechanical properties of a density-graded replicated aluminum foam[J]. Materials Science and Engineering A, 2008, 489(1):439-443.
[5] Brothers A H, Dunand D C. Density-graded cellular aluminum[J]. Advanced Engineering Materials, 2006, 8(9):805-809.
[6] Hassani A, Habibolahzadeh A, Bafti H. Production of graded aluminum foams via powder space holder technique[J]. Materials and Design, 2012, 40:510-515.
[7] Hangai Y, Takahashi K, Yamaguchi R, et al. Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography[J]. Materials Science and Engineering A, 2012, 556(9):678-684.
[8] Hangai Y, Saito K, Utsunomiya T, et al. Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys[J]. Materials Science and Engineering A, 2014, 613(34):163-170.
[9] 向宇, 程涛. 梯度泡沫铝的高速碰撞研究[J]. 轻金属, 2012(3):54-59. Xiang Yu, Cheng Tao. Research on the high velocity impacting of graded aluminium foam[J]. Light Metals, 2012(3):54-59. (in Chinese)
[10] Kiernan S, Cui L, Gilchrist M D. A numerical investigation of the dynamic behaviour of functionally graded foams[C]. Springer Netherlands:Iutam Symposium On Multi-functional Material Structures and Systems, 2010, 19(5):15-24.
[11] Kiernan S, Gilchrist M D. Towards a virtual functionally graded foam:Defining the large strain constitutive response of an isotropic closed cell polymeric cellular solid[J]. International Journal of Engineering Science, 2010, 48(11):1373-1386.
[12] Kiernan S, Cui L, Gilchrist M D. Propagation of a stress wave through a virtual functionally graded foam[J]. International Journal of Non-Linear Mechanics, 2009, 44(5):456-468.
[13] Shen C J, Yu T X, Lu G. Double shock mode in graded cellular rod under impact[J]. International Journal of Solids and Structures, 2013, 50(1):217-233.
[14] Shen C J, Lu G, Yu T X. Dynamic behavior of graded honeycombs-A finite element study[J]. Composite Structures, 2013, 98(3):282-293.
[15] Shen C J, Lu G, Yu T X. Investigation into the behavior of a graded cellular rod under impact[J]. International Journal of Impact Engineering, 2014, 74:92-106.
[16] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5):531-570.
[17] Ajdari A, Nayeb-Hashemi H, Vaziri A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures[J]. International Journal of Solids and Structures, 2011, 48(3/4):506-516.
[18] Ajdari A, Babaee S, Vaziri A. Mechanical properties and energy absorption of heterogeneous and functionally graded cellular structures[J]. Procedia Engineering, 2011, 10:219-223.
[19] Wang X K, Zheng Z J, Yu J L, Wang C F. Impact resistance and energy absorption of functionally graded cellular structures[J]. Applied Mechanics and Materials, 2011, 69:73-78.
[20] Wang X K, Zheng Z J, Yu J L. Crashworthiness design of density-graded cellular metals[J]. Theoretical and Applied Mechanics Letters, 2013, 3(3):9-13.
[21] Ajdari A, Canavan P, Nayeb-Hashemi H, et al. Mechanical properties of functionally graded 2-D cellular structures:A finite element simulation[J]. Materials Science and Engineering A, 2009, 499(Supp l/Suppl 2):434-439.
[22] 吴鹤翔, 刘颖, 张新春, 等. 点阵结构对具有密度梯度的三维空心球泡沫冲击性能的影响[J]. 工程力学, 2011, 28(12):213-220. Wu Hexiang, Liu Ying, Zhang Xinchun, et al. The influence of lattice structures on the dynamic performance of 3d metal hollow sphere foams with density gradient[J]. Engineering Mechanics, 2011, 28(12):213-220. (in Chinese)
[23] Liu Y, Wu H X, Wang B. Gradient design of metal hollow sphere (MHS) foams with density gradients[J]. Composites Part B Engineering, 2012, 43(3):1346-1352.
[24] Fan J, Zhang J, Wang Z, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams[J]. Materials Science and Engineering A, 2013, 561(3):352-361.
[25] Zhang J, Zhao G P, Lu T J. Dynamic responses of sandwich beams with density-graded aluminum foam cores[J]. International Journal of Protective Structures, 2011, 2(4):439-452.
[26] 张健, 赵桂平, 卢天健. 闭孔泡沫铝应变率效应的试验和有限元分析[J]. 西安交通大学学报, 2010, 44(5):97-101. Zhang Jian, Zhao Gunping, Lu Tianjian. Experimental and numerical study on strain rate effects of close-celled aluminum foams[J]. Journal of Xi'an Jiaotong University, 2010, 44(5):97-101. (in Chinese)
[27] 张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的能量吸收特性[J]. 西安交通大学学报, 2013, 47(11):105-112. Zhang Jian, Zhao Guiping, Lu Tianjian. Energy absorption behaviour of metallic cellular materials under impact loading[J]. Journal of Xi'an Jiaotong University, 2013, 47(11):105-112. (in Chinese)
[28] 张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为[J]. 爆炸与冲击, 2014, 34(3):278-284. Zhang Jian, Zhao Guiping, Lu Tianjian. High speed compression behaviour of metallic cellular materials under impact loading[J]. Explosion and Shock Waves, 2014, 34(3):278-284. (in Chinese)
[29] 田杰, 胡时胜. 基体性能对泡沫铝力学行为的影响[J]. 工程力学, 2006, 23(8):168-171. Tian Jie, Hu Shisheng. Effect of matrix properties on the mechanical behaviors of aluminum foams[J]. Engineering Mechanics, 2006, 23(8):168-171. (in Chinese)
[30] Hallquist J O. LSTC.LS-DYNA User's manual[M]. Livermore, CA, US, Livermore Software Technology Corporation, 2007:1430-1432.

[1] 骞朋波 尹晓春 沈煜年 孔德平. 梁撞击弹塑性波传播的动态子结构方法的研究[J]. 工程力学, 2012, 29(12): 377-384.
[2] 吴鹤翔;刘颖;张新春;杨帅. 点阵结构对具有密度梯度的三维空心球泡沫冲击性能的影响[J]. 工程力学, 2011, 28(12): 213-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日