梁峰, 包日东. 温度场中输流碳纳米管的热弹性参数振动稳定性分析[J]. 工程力学, 2015, 32(6): 238-242. DOI: 10.6052/j.issn.1000-4750.2013.10.0984
引用本文: 梁峰, 包日东. 温度场中输流碳纳米管的热弹性参数振动稳定性分析[J]. 工程力学, 2015, 32(6): 238-242. DOI: 10.6052/j.issn.1000-4750.2013.10.0984
LIANG Feng, BAO Ri-dong. THERMOELASTIC PARAMETRIC RESONANCE STABILITY OF A FLUID- CONVEYING CARBON NANOTUBE IN TEMPERATURE FIELDS[J]. Engineering Mechanics, 2015, 32(6): 238-242. DOI: 10.6052/j.issn.1000-4750.2013.10.0984
Citation: LIANG Feng, BAO Ri-dong. THERMOELASTIC PARAMETRIC RESONANCE STABILITY OF A FLUID- CONVEYING CARBON NANOTUBE IN TEMPERATURE FIELDS[J]. Engineering Mechanics, 2015, 32(6): 238-242. DOI: 10.6052/j.issn.1000-4750.2013.10.0984

温度场中输流碳纳米管的热弹性参数振动稳定性分析

THERMOELASTIC PARAMETRIC RESONANCE STABILITY OF A FLUID- CONVEYING CARBON NANOTUBE IN TEMPERATURE FIELDS

  • 摘要: 应用非局部粘弹性欧拉梁模型研究不同温度场中输送脉动流碳纳米管的热弹性参数振动稳定性问题。包含有小尺度项和热效应项的控制方程通过Galerkin法离散后,用平均法对其进行求解,得到了管道稳定性边界的解析表达式。利用数值算例分析各参数对稳定性边界的影响发现:纳米管在高温温度场中的参数振动稳定性要比低温场中降低很多;提高温度变化量和非局部参数值,在低温场中可以增强系统稳定性,而在高温场中却会降低系统稳定性;不论在高温还是低温场中,提高纳米管粘弹性系数都会增强系统稳定性,但在高温场中,管材粘弹性的这种作用会比在低温场中降低很多。该文结论可为输流纳米机械的结构设计和热弹性振动分析提供理论 基础。

     

    Abstract: A nonlocal viscoelastic Euler-Bernoulli beam model is developed to investigate the thermoelastic parametric resonance stability of a pulsating-fluid-conveying carbon nanotube (CNT) in different temperature fields. After discretized by the Galerkin method, the governing equation with small scale and thermal effect terms is solved by the averaging method and the analytical expression of stability boundary is obtained. It is found through numerical examples that the stability of the CNT in higher temperature fields is much poorer than that in lower ones. Increase of temperature change and nonlocal parameter in lower temperature fields can enhance the stability of the CNT, but it will reduce in higher temperature fields. Increase of viscoelastic coefficient in higher and lower temperature fields can both enhance the stability of the CNT, but this viscoelastic effect of the material on the stability will decrease in higher temperature fields. The conclusions drawn in the present paper are expected to be helpful for the structural design and thermoelastic vibration analysis of fluid-conveying nanodevices.

     

/

返回文章
返回