工程力学 ›› 2012, Vol. 29 ›› Issue (8): 346-353.doi: 10.6052/j.issn.1000-4750.2010.11.0810

• 其他工程学科 • 上一篇    下一篇

绕三维水翼非定常空化流动结构的数值与实验研究

时素果, 王国玉, 袁海涛, 王复峰   

  1. 北京理工大学机械与车辆学院,北京 100081
  • 收稿日期:2010-11-08 修回日期:2011-02-20 出版日期:2012-08-25 发布日期:2012-08-25
  • 通讯作者: 时素果(1982―),女,河北人,博士生,从事空化热力学效应的研究(E-mail: shisuguo@bit.edu.cn). E-mail:shisuguo@bit.edu.cn
  • 作者简介:王国玉(1961―),男,河北人,教授,博士,博导,从事流体机械及空化理论的研究(E-mail: wangguoyu@bit.edu.cn);
    袁海涛(1985―),男,河南人,硕士生,从事流体机械及多相流理论的研究(E-mail: xizhilangsuper@163.com);
    王复峰(1978―),男,河南人,博士生,从事多相流理论的研究(E-mail: wangfuf@163.com).
  • 基金资助:

    国家自然科学基金项目(50976004);高校博士点基金项目(20080070027)

THE INVESTIGATION OF UNSTEADY CAVITATION FLOW STRUCTURE AROUND A THREE-DIMENSIONAL HYDROFOIL BY NUMERICAL AND EXPERIMENTAL METHODS

SHI Su-guo, WANG Guo-yu, YUAN Hai-tao, WANG Fu-feng   

  1. School of Mechanical and Vehicular, Beijing Institute of Technology, Beijing 100081, China
  • Received:2010-11-08 Revised:2011-02-20 Online:2012-08-25 Published:2012-08-25

摘要:

为了说明非定常空化的流动机理,该文采用数值与实验相结合的方法对绕三维水翼片状和云状空化流动结构进行了研究.实验在高速水洞中进行,采用高速录像技术观测了片状和云状空化阶段的空穴形态.数值计算基于均相流模型,汽液混合区域密度由质量传输方程调节.利用商业软件二次开发技术引入准确描述空化流场非定常特性的FBM 湍流模型,进行绕三维水翼的数值模拟,获得了随时间变化的空穴形态、压力和速度分布等流场结构.与实验结果对比发现,数值计算结果与实验基本一致.在片状空化阶段,空穴稳定地附着在水翼表面,只有空穴尾部不断的有小空泡团沿着翼弦方向脱落.在云状空化阶段,清楚得描述了空穴的产生-发展-脱落-溃灭的准周期性变化,并准确地捕捉到空泡脱落时,附着在翼型前端的U 型空穴和翼展方向不同强度的反向射流,脱落的空泡由翼型中前部旋涡状脱落.

关键词: 非定常空化, 机理, 数值计算, 准周期, U 型空穴

Abstract:

In order to clarify the mechanism of the unsteady cavitation flow, the characteristics of sheet and cloud cavitating flow structure around a hydrofoil are investigated by joint numerical and experimental methods. Experiments on a hydrofoil are carried out in a rectangular test section of cavitation tunnel, a high-speed video camera is used to visualize the cavitating flows. The computations are based on the homogeneous model, the liquid/vapor mixture density is regulated by mass transfer equation. The FBM turbulence model with modified eddy viscosity coefficient is used for the computations with software. A good agreement is obtained between experimental data and numerical simulations. In sheet cavitation regime, it has a quasi-steady characteristic with most of the unsteadiness localized in the closure region. In cloud cavitation regime, it has a cavity generation-development-shedding-collapsing quasi-periodic characteristic, and it can capture the U-shaped cloud cavity and different intensity of the re-entrant jet in spanwise direction towards the mid-span region when the large-scale cavity is shedding, the cavities breaks off from the mid-span region near the leading edge of the hydrofoil and become the vortical cloud cavities, which have the large-scale U-shaped structure.

Key words: unsteady cavitation, mechanism, numerical simulation, quasi-periodic, U-shaped cloud cavity

中图分类号: 

  • TU131.3

[1] Wang G Y, Senocak I, Shyy W. Dynamics of attached turbulent cavitating flows [J]. Progress in Aerospace Sciences, 2001, 37(6): 551-581.   

[2] 李向宾, 王国玉, 张敏弟, 刘淑艳. 绕水翼超空化流动 形态与速度分布[J]. 力学学报, 2008, 40(3): 315-322. Li Xiangbin, Wang Guoyu, Zhang Mindi, Liu Shuyan. Characteristics of supercavitating flows around a hydrofoil [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 315-322. (in Chinese)

[3] Kawanami Y, Kato H. Mechanism and control of cloud cavitation [J]. Journal of Fluids Engineering, 1997, 119(8): 788-794.

[4] Arakeri V H, Acosta A J. Viscous effects in the inception of cavitation axisymmetric bodies [J]. Journal of Fluids Engineering, 1973, 95(3): 519-523.

[5] Gopalan S, Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]. Physics of Fluids, 2000, 12(4): 797-799.   

[6] 张博, 王国玉, 李向宾, 韩占忠. 绕水翼片状空化流动 结构的数值与实验研究[J]. 工程热物理学报, 2008, 29(11): 1847-1851. Zhang Bo, Wang Guoyu, Li Xiangbin, Han Zhanzhong. Analysis of sheet cavitation flow structure by numerical and experimental studies [J]. Journal of Engineering Thermophysics, 2008, 29(11): 1847-1851. (in Chinese)

[7] Furness R A, Hutton S P. Experimental and theoretical study of two-dimensional fixed-type cavities [J]. Journal of Fluids Engineering, 1975, 97(4): 515-522.   

[8] 张博, 王国玉, 黄彪, 余志毅. 云状空化非定常脱落机 理的数值与实验研究[J]. 力学学报, 2009, 41(5): 652- 658. Zhang Bo, Wang Guoyu, Huang Biao, Yu Zhiyi. Numerical and experimental studies on unsteady shedding mechanisms of cloud cavitations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 652-658. (in Chinese)

[9] Laberteaux K R, Ceccio S L. Partial cavity flows: Part 2 —cavities forming on test objects with spanwaise variation [J]. Journal of Fluid Mechanics, 2000, 431: 43-63.

[10] Kubota A, Kato H. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling techniques [J]. Journal of Fluids Engineering, 1989, 111(3): 204-210.

[11] Kawanami Y, Kato H, Maeda M, Nakasumi S. Inner Structure of Cloud Cavity on a Foil Section [C]. Proceedings 4th international symposium on cavitation, Pasadena, California, 2001, A8.005.

[12] Johansen S T, Wu J, Shyy W. Filter-based unsteady RANS computations [J]. International Journal of Heat and Fluid Flow, 2004, 25(1): 10-21.   

[13] Singhal A K, Athavale M M. Mathematical basis and validation of the full cavitation model [J]. Journal of Fluids Engineering, 2002, 124(4): 617-624.

[1] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(6): 88-96.
[2] 杨春宝, 王睿, 张建民. 单桩基础型近海风机系统自振频率实用计算方法[J]. 工程力学, 2018, 35(4): 219-225.
[3] 孟璐, 刘影, 黄彪, 高远, 吴钦. 绕弹性水翼非定常空化流激振动特性研究[J]. 工程力学, 2017, 34(8): 232-240.
[4] 施正捷, 李全旺, 樊健生. 偏心钢结构节点梁柱-核心区受力机理研究[J]. 工程力学, 2017, 34(5): 68-77.
[5] 施刚, 陈玉峰. 基于微观机理的Q460钢材角焊缝搭接接头延性断裂研究[J]. 工程力学, 2017, 34(4): 13-21.
[6] 傅杰, 刘昆, 王自力. 强桁材结构在面内冲压载荷作用下的损伤变形机理研究[J]. 工程力学, 2017, 34(12): 248-256.
[7] 陆明飞, 叶继红. 基于构形易损性理论的单层网壳结构静力稳定性研究[J]. 工程力学, 2017, 34(1): 76-84.
[8] 秦其伟, 刘小兵, 刘庆宽. 高超临界雷诺数下圆柱绕流的数值计算[J]. 工程力学, 2016, 33(增刊): 18-22,28.
[9] 孙斌, 胡志强, 王晋. 船底肋板在尖锐礁石搁浅场景下的受力分析[J]. 工程力学, 2016, 33(增刊): 266-269,295.
[10] 谢启芳, 杜彬, 钱春宇, 郑培君, 李双, 张风亮. 古建筑木结构燕尾榫节点弯矩-转角模型研究[J]. 工程力学, 2016, 33(8): 39-44.
[11] 吴函恒, 周天华, 陈军武, 吕晶. 装配式钢框架-预制混凝土抗侧力墙结构受剪承载力分析[J]. 工程力学, 2016, 33(6): 107-113.
[12] 咸庆军, 童乐为. 型钢混凝土梁梁连接节点疲劳强度分析[J]. 工程力学, 2016, 33(4): 188-194,204.
[13] 周云, 林绍明. 带耗能减震层框架-核心筒结构的简化模型与减震机理研究[J]. 工程力学, 2016, 33(2): 136-144.
[14] 黄思凝, 郭迅, 孙得璋, 管友海, Tarasenko A. A. 外廊式RC框架破坏机理的振动台试验研究[J]. 工程力学, 2016, 33(12): 63-71,85.
[15] 赵世春, 余志祥, 赵雷, 齐欣, 韦韬. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学, 2016, 33(10): 24-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日