工程力学 ›› 2012, Vol. 29 ›› Issue (7): 136-146.doi: 10.6052/j.issn.1000-4750.2010.09.0682

• 土木工程学科 • 上一篇    下一篇

考虑材料组成特性的混凝土轴拉破坏过程细观数值模拟

刘智光, 陈健云   

  1. 大连理工大学海岸与近海工程国家重点实验室, 辽宁, 大连 116024
  • 收稿日期:2010-09-25 修回日期:2011-03-18 出版日期:2012-07-25 发布日期:2012-07-25
  • 通讯作者: 刘智光(1981―),男,湖南益阳人,博士生,从事混凝土破坏机制及数值模拟等方面的研究(E-mail: liuzg1981@163.com). E-mail:liuzg1981@163.com
  • 作者简介:陈健云(1968―),男,辽宁大连人,教授,博士,博导,从事重大工程结构安全分析及评估研究(E-mail: eerd001@dlut.edu.cn).
  • 基金资助:

    国家自然科学基金项目(50679006);教育部新世纪优秀人才计划项目(NCET-06-0270)

MESO-STRUCTURAL ANALYSIS OF CONCRETE SPECIMENS UNDER UNIAXIAL TENSION BASED ON COMPOSITION CHARACTERISTICS

LIU Zhi-guang, CHEN Jian-yun   

  1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2010-09-25 Revised:2011-03-18 Online:2012-07-25 Published:2012-07-25

摘要:

为反映骨料、砂浆及其之间的界面过渡区的组合特点和材料性能,基于材料细观非均匀性和有限元方法的混凝土破坏过程细观数值模拟需进行复杂、细致的网格剖分,导致了繁重的前处理工作和可观的计算量。该文对混凝土材料细观单元材质组成的单一化假定进行改进,将内嵌界面过渡区材料的规则化单元视为一种广义复合材料单元,建立了复合型界面损伤模型。采用等效方法确定单元的复合弹性关系,通过有限元法计算单元的局部应力;用细观层次上弹性力学性能的弱化描述单元组成材料的损伤,混凝土材料的破坏过程通过单元各组分的损伤模拟。应用该复合型界面损伤模型研究了混凝土试件的单轴拉伸破坏过程,细观数值模拟结果符合混凝土试件的宏观破坏特征,表明该模型可作为分析混凝土材料破坏过程的一种有效途径。

关键词: 混凝土, 界面过渡区, 破坏过程, 单轴拉伸, 细观数值

Abstract:

The behaviour of concrete can be simulated by the mesoscopic numerical model based on the finite element method and introducing the heterogeneity of materials. The relatively fine meshes of concrete would be practically impossible with the standard software, which are needed to reflect the geometry and properties of the aggregate, interfacial transition zone and matrix at the meso-level. In this construction, a mixed interface damage constitutive model is applied to develop a meso-structural model for simulating the fracture behavior of the concrete specimen loaded in uniaxial tension in 2D. Using the material mechanics method, the influence of the interfacial transition zone is smeared into a small region of the adjacent intact materials (aggregates and matrix). The elastic constants in the region are defined in terms of the constitutive properties of both the intact materials and the interfacial transition zone as well as the geometry of the homogenized domain. An elastic finite element program is employed as the basic stress analysis tool while elastic purely brittle damage mechanics is used to describe the constitutive law of a meso-level element. The maximum tensile stress is utilized as a damage threshold for all elements, especially for each material of composite elements. The numerical results show a good qualitative agreement with the macro fracture mechanism of concrete from experiment observations and illustrate the capabilities of the model.

Key words: concrete, interfacial transition zone, fracture process, uniaxial tension test, meso-structural analysis

中图分类号: 

  • TU528.01

[1] Roelfstra P E, Sadouki H, Wittmann F H. Le bétonnumérique [J]. Materials and Structures, 1985, 18(5):327-335.

[2] Lilliu G, van Mier J G M. 3D lattice type fracture modelfor concrete [J]. Engineering Fracture Mechanics, 2003,70(7/8): 927-941.

[3] Bolander J E, Hong G S, Yoshitake K. Structural concreteanalysis using rigid-body-spring networks [J].Computer-Aided Civil Infrastructure Engineering, 2000,15(2): 120-133.

[4] Cusatis G L, Bazant Z P, Cedolin L. Confinement-shearlattice model for concrete damage in tension andcompression: I. Theory [J]. Journal of EngineeringMechanics, 2003, 129(12): 1439-1448.

[5] Cusatis G L, Bazant Z P, Cedolin L. Confinement-shearlattice model for concrete damage in tension andcompression: II. Computation and validation [J]. Journalof Engineering Mechanics, 2003, 129(12): 1449-1458.

[6] Bazant Z P, Tabbara M R, Kazemi M T, et al. Randomparticle models for fracture of aggregate or fibercomposites [J]. Journal of Engineering Mechanics, 1990,116(8): 1686-1705.

[7] Jirásek M, Bazant Z P. Particle model for fracture andstatistical micro-macro correlation of material constants

[C]// Wittmann F H. Proc. 2nd Int. Conf. on FractureMech. of Concrete and Concrete Structures. Freiburg,Germany: Aedificatio Publishers, 1995: 955-964.

[8] Stankowski T. Numerical simulation of progressivefailure in particle composites [D]. Boulder, USA:University of Colorado, 1990.

[9] Vonk R. Softening of concrete loaded in compression [D].Eindhoven, Netherlands: Technische UniversiteitEindhoven, 1992.

[10] 刘光廷, 王宗敏. 用随机骨料模型数值模拟混凝土材料的断裂[J]. 清华大学学报, 1996, 36(1): 84-89.Liu Guangting, Wang Zongmin. Simulation of thefracture of concrete with random aggregate model [J].Journal of Tsinghua University, 1996, 36(1): 84-89. (inChinese)

[11] Caballero A, Lopez C M, Carol I. 3D meso-structuralanalysis of concrete specimens under uniaxial tension [J].Computer Methods in Applied Mechanics andEngineering, 2006, 195(52): 7182-7195.

[12] Kwan A K H, Wang Z M, Chan H C. Mesoscopic study ofconcrete II: nonlinear finite element analysis [J].Computer and Structures, 1999, 70(5): 545-556.

[13] Zhu W C, Tang C A. Numerical simulation on shearfracture process of concrete using mesoscopic mechanicalmodel [J]. Construction and Building Materials, 2002,16(8): 453-463.

[14] 唐春安, 朱万成. 混凝土损伤与断裂—数值试验[M].北京: 科学出版社, 2003: 24-25.Tang Chun’an, Zhu Wancheng. Numerical test of damageand fracture of concrete [M]. Beijing: Science Press,2003: 24-25. (in Chinese)

[15] Wriggers P, Moftah S O. Mesocale models for concrete:Homogenization and damage behavior [J]. FiniteElements in Analysis and Design, 2006, 42(7): 623-636.

[16] Garboczi E J, Bentz D P. Analytical formulas forinterfacial transition zone properties [J]. AdvancedCement Based Material, 1997, 6(3): 99-108.

[17] Bentur A. Microstructure interfacial effects andmicromechanics of cementitious composites [J]. CeramicTransaction, 1990, 16: 523-550.

[18] 应宗权, 杜成斌. 考虑界面影响的混凝土弹性模量的数值预测[J]. 工程力学, 2008, 25(8): 92-96.Ying Zongquan, Du Chengbin. A Numerical Method forEffective Elastic Modulus of Concrete with InterfacialTransition Zone [J]. Engineering Mechanics, 2008, 25(8):92-96. (in Chinese)

[19] Walraven J C. Aggregate Interlock: A theoretical andexperimental Analysis [D]. Delft,Netherlands: DelftUniversity of Technology, 1980.

[20] 牛斌, 杨海天. 基于均匀化方法的斜交节理岩体复合本构关系研究[J]. 岩土工程学报, 2007, 29(5): 773-778.Niu Bin, Yang Haitian. Homogenization-basedinvestigation on constitutive relationship of oblique jointrock [J]. Chinese Journal of Geotechnical Engineering,2007, 29(5): 773-778. (in Chinese)

[21] 张武, 张宪宏. 节理岩体的弹性模型[J]. 岩土工程学报, 1987, 9(4): 33-44.Zhang Wu, Zhang Xianhong. Elastic models of jointedrock masses [J]. Chinese Journal of GeotechnicalEngineering, 1987, 9(4): 33-44. (in Chinese)

[22] 江见鲸, 陆新征, 叶列平. 混凝土结构有限元分析[M].北京: 清华大学出版社, 2005: 232-233.Jiang Jianjing, Lu Xinzheng, Ye Lieping. Finite ElementAnalysis of Concrete Structures [M]. Beijing: TsinghuaUniversity Press, 2005: 232-233. (in Chinese)

[23] 刘西拉, 温斌. 考虑广义边界条件的混凝土软化[J].岩石力学与工程学报, 2008, 27(5): 885-892.Liu Xila, Wen Bin. Concrete strain softening consideringglobal boundary conditions [J]. Chinese Journal of RockMechanics and Engineering, 2008, 27(5): 885-892. (inChinese)

[24] Carpinteri A, Ferro G. Scaling behavior and dualrenormalization of experimental tensile softeningresponses [J]. Materials and Structures, 1998, 31(5):303-309.

[25] Bazant Z P, Oh B H. Crack band theory for fracture ofconcrete [J]. Materials and Structures, 1983, 16(3): 155-177.

[1] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[2] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[3] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53-61.
[4] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134-139.
[5] 刘晓, 徐建烨, 王兵. 高温后中空夹层钢管混凝土柱压弯机理分析[J]. 工程力学, 2018, 35(S1): 40-45.
[6] 汪建群, 吕鹏, 许巧, 罗许国, 祝明桥. 混凝土徐变计算模型及其实用性评述[J]. 工程力学, 2018, 35(S1): 156-160.
[7] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[8] 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1): 172-180.
[9] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[10] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[11] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[12] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[13] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104-116.
[14] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真[J]. 工程力学, 2018, 35(7): 167-175,186.
[15] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日